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FOREWORD

This report was prepared by the Institute of Engineering Research, University
of California, under USAF Contract No. AF 33(616)-6910. The work was administered .
under the direction of the Thermomechanics Research Branch, Aeronsutical Research '
Laboratory. The authors are indebted to J. Frisch, Associate Professor of ,
Mechanical Engineering, for supervision of the tests and analysis of the results
described in Part III.

This report covers research conducted from 1 February 1960 through 31
January 1961.
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ABSTRACT

A general small-deflection theory governing the elastostatic extension and
flexure of thin laminated anisotropic shells and plates is formulated. The plate
or shell structure may be composed of an arbitrary number of bonded layers, each
of which may possess different thickness, orientation, a.nd/or orthotropic elastic
properties. Donnell-type equations for cylindrical shells and Poisson-Kirchhoff
plate equations are explicitly discussed, along with procedures for determining
stresses in an individual lamina. Several methods of solution of the system of
equations governing extension and flexure of plates are discussed and illustrated
with examples. Optimization of laminate configuration is treated briefly. The
results of a limited number of crack propagation tests of flat plate aluminum
foil laminates in uniaxial tension are presented.
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INTRODUCTION

Analysis and prediction of the mechanical behavior of structural laminates,
with a view toward possible application in aircraft or missile structures is con-
tingent upon obtaining basic information involving: (1) detemination of mechanical
properties of materials, (2) development of appropriate stress analysis procedures,
and (3) establishment of suitable criteria for strength analysis.

This report describes a theory of behavior, for flat plate and cylindrical
shell structures, appropriate to bonded laminate-type construction. The possibility
of orthotropic elastic properties and arbitrary orientation of elastic axes of
individual laminas is accounted for. The theory may be extended to include aniso-
tropic layers with only slight modification. Preliminary experimental results of
crack initiation and propagation studies for aluminum foil laminates in uniaxial
tension are presented.

Manuscript released by the authors, March 31, 1961, for publication as an ARL
Technical Documentary Report.




PART I: THEORY OF THIN ANISOTROPIC PILATES AND SHELLS

INTRODUCTION

A general theory for the flexural and extensional behavior of thin laminated
anisotropic shells is developed in Part I. The theory is formulated within the
framevork of the classical shell theory predicated on the Kirchhoff-Love hypothesis.
In this theory the effect of transverse shear deformation and transverse normal
stress is neglected. ILove's first approximation is employed in the derivation.

The procedures in developing these governing equations are as follows. The stress-
strain relations for an individual lamina in generalized plane stress are estab-
lished. A bYbrief discussion on surface geometry pertinent to the derivation is
given. Stress-resultants and stress~couples are formulated by integration of the
camponents of stress across the thickness of the shell. The condition of equili-
brium is then imposed upon the shell. The additional equation for the compatibility
of the reference surface is given. PBoundary conditions associated with the boundary
value problem are discussed. This system of general equations is then specialized
for cylindrical shells and flat plates.

Much of the early work in laminated shells was devoted to symmetric sandwich-
type construction of isotropic materials. A theory of laminated orthotropic shells
was developed by S. A. Ambartsumyan (1), who restricted the elastic axes of all the
laminas to run parallel to the coordinate axes. Other authors have studied pro-
blems which are governed by the same type of differential equations as for laminated
plates and shells. Their work will be cited. Other methods of solution, such as
pertubation and iteration, are &lso discussed.

1. GENERAL THEORY OF THIN LAMINATED ANISOTROPIC SHELLS

STRESS-STRAIN RELATIONS FOR A LAMINA IN GENERALIZED PLANE STRESS

To study laminate systems, it is first necessary to establish the stress-
strain relations for a single lamina. Consider an individual lamina whose middle
surface lies in the plane z = O, with the axes 1 and 2 forming & right-handed
orthogonal coordinate system. The strain-stress relations for a completely general
anisotropic material in matrix notation assumes the form:

4 9 4 [N

3
)
€ S17 512 Sy oy
€, = S;, S, S o, (1.1)
Yo | 516 %6 Se6 1o
. P 4 L P

In B¢ (1.1), (o3, op, 1120) and (€. €5, 8‘]2) refer tc theaverage normal and
shearing stresses and strains, respectively, over the lamina thickness. Due to
the symmetry of the compliance matrix S4s, there are only six independent constants
in generalized plane stress for an aniso%ropic material. If the material is ortho-
tropic and the principal elastic axes coincide with the coordinate axes, the
strain-stress relations reduce to the following:




P c » - 4 -

€, 811 S O %9

€2 = 515 S, 0 o, (1.2)
hl/ezflz) . 0 0 2S¢ I 1 T !

The matrix of coefficients Siy4 in Eq (1.2) is related to the conventional elastic
moduli and Poisson's ratio in the following manner:

S ::-l— S = S =_-21'=-._y_“
11 El 12 21 El E&
(1.3)
S —_l_ S =l
e2 " E, 66 T G

It is seen that the elastic properties of an orthotropic lamina are defined by four
independent constants. The factors 2 and 1/2 in Eq (1.2) are inserted so as to
make the matrix a tensor in order that tensorial transfomations can be carried out
in the sequel. Since most of the further work is devoted to orthotropic materials,
subsequent discussion is restricted to orthotropic stress-strain relatioas. For
convenience of application, it is frequently necessary to express &g (1.2) in
inverse form, i.e., as a stress-strain relation. Inversion of Eq (1.2) gives:

1 1
o, €3 Cp O € \
%2 = | %2 G2 ©° €, (1.4)
L T ‘ h 0 0 2C,. ‘ 1/2?}“la
where
= Soo ~ o
11 e & 1-2 YV
811 520 = 510 L
e 2 = E, (1.5)
22 S S - S 2 l- 'Vl ¥, )
11 P22 T T12 <
S TS e S1o BV, BV,
12 21 A 2 1-Y9.V,  1-2. V.
$11 S, - 815 1¥2 .19 2

#
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=-L=G (1°5)

STRESS-STRAIN RELATIONS FOR AN ORTHOTROPIC
LAMINA REFERRED TO ARBITRARY AXES

In developing the theory associated with laminates composed of individual
laminas in which the elastic axes are oriented at various angles relative to the
major axis of the laminate proper, it is necessary to express the stress-strain
relations for an individual lamina referred to orthogonal axes making an arbitrary
angle relative to the elastic axes of the lamipa. Referring to Figure 1.1, the
elastic axes 1,2, of the lamina are rotated through a positive angle © relative to
the arbitrary reference axes ¢, p.

B

oL

Figure 1.1

It is desired to express the stress-stirain equations with respect to axes ¢, 3.
If the desired equations take the fom

4 3 — — - 1 r 9
% €, T, £y €,
-l & = (1.6)
. TaB J \ 016 026 2066 P . 1/2*03 /

then the problem is to express the Cjj matrix in terms of the Ci: matrix from
£q (1.%4) and functions of the angle ©. This can be accamplished by utilizing
appropriate transformations for stress and strain matrices as follows: It is
easily verified that
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where the matrix T
cos2 ()

2
[ T ] = sin- ©
- sin

k 1

is given by

@ cos ©

1/27)“043 |

sin2 [*]

sin @ cos ©

From Eq (1.4), (1.7), and (1.8) there results

| os

/

S

]

2sin © cos ©
- 2sin © cos ©

cos2 @ - sin” ©

1/2‘6“@‘

(1.7)

(1.8)

(1.9)

(1.10)

where {T] "1 denotes the inverse of [T] . Comparing Eq (1.6) and (1.10) gives

(e = ()7 (¢ ()

Performing the matrix operations indicated by Eq (1.11) leads to the following

expressions for the elements of the C

matrix.

(1.11)
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C,y =Cyyco8 0+ 2(Cl2+ 2066) sin” @ cos” @ + C,, sin ~ @

= 4 2 2 i
C.,, sin’ o + 2(012-!- 2066) sin” © cos” @ + C,, cos’ ©

11 (1.12)

Ceg = (C]_l+ Copm 20 - 2066) ain® 0 cos> @ + Cs6 (sinh e + cosh 0)

= - L L

Cip = (cll+ Cop™ h066) sin” @ cos” @ + C,, (sin” @ + cos ©)

%= 2 (C -0 - 3 - 3
C.e (cll s 2c66) sin © cos” & + (012 C oot 2066) sin” © cos ©

= P - - 3 - 3
Cop (cll . 2c66) sin” © cos @ + (c12 Copt 2066) sin @ cos” @

In the preceding equations, the elastic constants for stress-strain relations
referred to arbitrary axes have been expressed in terms of the four independent
orthotropic constants and functions of the angle ©.

It is convenient in application to deal with the conventional elastic moduli
E1, Ep, G and Poisson's ratios ¥, &), instead of the elastic constants Cjj. This
can easily be accomplished by utilizing Eq (1.5), however, to simplify the g‘ina.l
expressions for the general relationships, let the following definitions be

introduced.

El=E

E, =1

where k and )\ are

Y. =
1 arbitrary parameters (1.13)

= k¥

6= —2E
1-x¥

The four independent parameters which describe the material properties are now
E,2 , k, and ». Substituting Eq (1.13) into Eq (1.5) and in turn into Eq (1.12)
gives:

= E L L 2 2
Ciy = ggaa]| cos ©+ksin 0+ (k¥ + k) sin” 9 cos” @ (1.1%)




522 = —= [ Iz cosu e+ sinLF e+ (2xY + W) sin2 o cos® é]
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© 1M
Ty, = —E-—E [ (1+3% - 1) sin @ cos® @ + kD (sin® o + cost o)] (1.1%)
1-x2Y
-— o i ]
C,. = = (z¥- 1+ 2.) sin © cosS O - (kY- &+ 2) sin> O cos © 3
10 .2
l-~_'2) Il
C.. = —=— (zy-1+2) sind @ cos © - (k¢/- k + 2) sin @ cos3 e
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SURFACE GZOMETIRY OF SHILLS

Let ¢ and B be orthogonal curvilinear coordinates which describe the surface
whose cartesian coordinates are given by the equations:

X (o, B)
Y (¢, B) (1.15)
Z (o, B)

X
Y

t3

The line element on the undeformed surface is
2 2 2
as® = A% w® + B° ap (1.16)
where A and B are the surface metric coefficients defined by

A2

(%,)° *+ (4,)° + (2,0)°
(.17)

2_ ., 2 2 . 2
- (‘{Jﬁ) + (Y)B) +(°—‘)B)

The corma in the suvscript denotes partial differentiation. The principal radii
of curvature Rj and Ry are related to the metric coefficients of the surface ty
the equations of Gauss and Codazzi:

B, A,
o g AB
(—A )’CI + ( B ):B + "_—Rlaa =0 (1.13)
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B
e =5 (%I),B - 52 (1.19)

Let the variables «, B, z be the orthogonal curvilinear coordinates of the
space surrounding the surface. The line element in this case is:

2

A e A (l+;—)ed:12
1

2

+ B (1+ %—)2 ag® + az (1.20)
2

ASSUMPTIONS IN THE CLASSICAL THEORY OF SHELLS

The following assumptions (2) are made in the classical theory of shells to
simplify the mathematical model.

In the analysis of beams, the assumption for displecements is that plane
sections remain plane before and after deformation. This notion was extended to
plates by Kirchhoff and to shells by Love. This assumption, as interpreted for
plates and shells, states that normals to the undeformed surface remain normal to
the deformed surface and suffer no extension.

Another assumption in the classical shell theory is that the thickness of
the shell is small in comparison to the lateral dimensions. As a consequence, the

quantities ;‘—l and ;—2 are small compared to unity and the variation of the radii of
curvature over the shell thickness is neglected.

The component of stress normal to the reference surface is small in comparison

to the other components of stress. This assumption stipulates a state of generaliz-
ed plane stress.

Also the strains and displacements of secund or higher order are neglected
in comparison to their first order texms in the classical theory.

THE DISPLACEMENT VECTOR

Quantitatively, the Kirchhoff-Love hypothesis implies that the components
of the displacement vector in orthogonal curvilinear coordinates are:

w,a u
u (o, B, Z)=uo(C(, 6)‘('—A—"R_i)z
W, v
v (Cl, B, z) = VO (CZ, ﬁ) - ("ﬁé - ﬁi) z (1-21)

w (o, B, z) wO (o, B)




In the above equations u,, V,, and v, are the displacement components of a point
on an arbitrary reference surface.
STRAIN-DISPLACIMENT EQUATIONS

The strain-displacement equations for the linear theory of shells (also known
as Ilove's Ffirst approximation) are:

€, elO - "‘yl
GB €, - z’)(2 (1.22)
Yop = 3’120 B 227(12

where elo, €20, 7‘120 are the reference surface strains and 'Xl, 'x 2s lx12
are the changes of curvature and the twist of the surface. The reference surface
strains are given by the same expressions for the middle surface strains in the
theory of single-layer shells. These expressions are given, for example, by
Novozhilov (3).

W

v
1 (o}
€n=a%a*mhps? K]

c

= X © ¥
€05V, TT Pa TR (1.23)

1 1 1
== v + = - = (u A, +
)‘120 A 0,c¢ B Y%, " AB (a, L TV, Big)

q - * q q 2 .
The expressions Tor the changes of curvature” wvhich are also given by Lovozhilov

(3) are:

u v
ol o 1 1
¥l_7\(7&w’0¢ -ﬁz)’a-l-K—BA’B(

o
F Vig " ﬁ—) ’
(1.24)

1,1 Yo 1 1 °
= e —_— T .4 + —y )
¥'2 5 (g RQ)’B i Do (F Ya Rl)

* q q q o - q
These eipressions ignore the extensional effects on the changes of curvi-
ture. According to llovozhilov (3), the effects are comparable to other elfects
which are neglected in this theory. The expressions vhich include extensional
effects are given, for example, Ly Vliasov (4). Por certain types of shells it
appears that for computational purposes the expressions which include the exten-
sional effects are more convenient to work with.

\O




1 1 1
Xlz = B (V,aﬁ by A’B Yia T B By V;s)
= (1.24%)
1 1 [¢] 1 1 [e)
"R, BY%,p ") R, & Vo,a T 7B B

STRESS-RESULTANTS AND STRESS-COUPLES

If the state of generalized plane stress is assumed to exist in the "k-th"
lamina of the shell, the stress-strain relation for this condition is given by
Eq (1.6). This equation rewritten for the "k-th" lamina is

°a(k) E11(1{) Elz(k) 516(k) | €,
°B(k) = Elz(k) Eea(k) E26(1{) € S8
hTo@(k) 316(1:) -526(1:) 566(k) | TO@J

The constants Cj k) can be found for each lamina from Eq (1.12) or (1.14%) by sub-
stituting the value of Oy appropriate to the particular lamina "k."

Stress-resultants and stress-couples can be formulated in terms of the dis-
placements by integrating Eq (1.25) across each lamina and suming the resulting
expressions over n layers.

s b
Wwies ), [ e e e
k=l h_, (1.26)
Nor N = i fhk (°B(k)’ 'ae(k))(l*ﬁ—) dz
kel B, 1
. %
gt ) [ @™ e e
kel B 4 y (1.27)
n :
M M= ) [ (@), ) s e B
k=1 ﬁ}k_l !

According to Love's first approximation, the quantities Z_ and - are neglected.

Rl Rz
ThereforelhB=Nm and MSM' .
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\ 1 \ 3 )
( N, Ay Ap A ][ € [D* D% D3 ( *,
s = Mo Ap Ay €| - [P DX D x.
Yo b6 P Hes | _7120 D b Dgr| | 2%y
(1.28)
'3 . r « o 4 - , -
My D,;¥ DiF D¢ | €0 D), D Dy Xy
My | = | DE DE DE|| €x| - |DPo DPxn Dx X
| Mo | P8 P el PP P16 P Pes | | 2X,
(1.29)
where the Aij, D;j, and Dij are defined as
2\ = (k)
Ay= ) Cyy - by q)
k=1,
1\ = (k) ,,2 .2
D¥ == ) T, ( ) (1.30)
372 Ly by -y
1 S (k) 3_,3
%1573 i (e - By
k=1

EQUATIONS OF EQUILIBERIUM AND COMPATIBILITY

The five equations of equilibrium for a shell element and the compatibility
equation for the in-plane strain components of the reference surface constitute
the determinative system for this problem. These equations referred to the
reference surface are:

AB
(BNC!)’C!+(ANQB)’ﬁ+Naﬁ A:B - NB B:a+§'£%+ABqa=O

AB

N N (1.31)
- @+ By+aBg =0
(%):a + (AQB))B AB (Ki + R2 qz

(B'la)) (AM )) +MaBAJB M B’G-ABQU.O
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(@p)sg * (A g + 1By = Ay = aBy =0 (1.31)
) S T A
TRC g :-\—[ { e*o o * By (€5 - €45) - 2 vlzo,,e'A’s 120],@

B
[% {A €10,|3 *a, (€5 - €0 -3 vlzo,a - By xlzo}],s -0
(1.32)

In the above equations qy, s and g, are the external loads on the shelil;
and Q@ are the transverse shearing forces, and all other symtols have veen
previously defined.

BOUI'DARY COIFDITIONS

Associated with the system of £3 (1.3L) and (1.32) are rour bouadary condi-
tions to be satisfied on the contour of the shell. “these boundary conditions
arise from the physical requirenents of support alcng the shell ccntour. wxpres-
sions of these conditions may ve convenienitly obtained vy variaticnal reihods.
Such an analysis leads to boundary conditions vhich are identical to those or
the vsval isotropic shell. However, it should te emphasized that in the present
case all boundary rorces and displacements are relerrcd to the reierence surifoce.
If, in the physical problem, the boundary forces and displaceuenis are given .Jor
some cther surface, an equivalent reference surrace system must ve calculated.

The boundary conditions for shells are sumarized in the following table.

I i1
Force Boundary Conditions Displacement Boundary Conditions
I o« I o
1 (x hn) (u 19
M M
& ; nt = _ _nt .
e (Moe * R nt TR (g = up)
n n
u
- 1 n
- M — - emm— -
3 (11 - F.) (v, - 3 )
n n
+ — M - o
L (Qn n Moo vn) (w - w)

(1.33)




Np - normal force

Nt - in-surface shearing force
Q, - transverse shearing force
M, - bending moment

Myt - twisting moment

Vp, - effective shear given by

1
Vn= Qh+-A;Mnt,t

w, - normal displacement

uy - tangential displacement

w - deflection normal to surface

Y - angle of rotation in the normal direction given by

S ST
"2 Y'a "R
n n

An metric coefficient associated with the contour.

Bars over the quantities signify that they are the prescribed values at the
boundaries.

In each of the four conditions, either the barred gquantity in column I or II
must be prescribed. For that force or displacement which is prescribed, the
bracketed quantity must venish. This means that the unbarred quantity (that force
or displacement from the interior of the shell) must take on the prescribed value

on the boundary.

Some examples of boundary conditions are:

Free edge:
Mnt 1
N o, Nt ] o, M =0, Q‘n !Mt,l 0

Hinged edge with fixed support:

M =0, un=0, u =0, w=0

M =0, w=0, u =0, N =0

13




Clamped edge:

u
1 n
W, =0, v, =0, Vim0, q’rn"’n"a—n”

The theory developed need not be restricted to shells comprised of ortho-
tropic laminas. Because of possible rotation of the orthotropic elastic axes,
the equations already involve six Ci which, however, are not independent for
a shell of orthotropic_laminas. %he most general case, there can exist six
independent constants Cij. It is then only necessary to regard these six con-
stants as campletely independent for a theory which involves a completely aniso-
tropic material.

14




2. DONNELL-TYPE EQUATIONS FOR LAMINATED ANISOTROPIC CYLINDRICAL SHELLS

In this section, the general equations from the preceding section are
specialized for a circular cylindrical shell using the Donnell approximations,
which neglect certain terms in the changes of curvature and in the equilibrium
equations. The justification for neglecting these terms can be argued by con-
sideration of the configuration of the shell and the geametry of deformation.
The Donnell Approximations simplify the mathematical model considerably and the
results obtained from this theory, as discussed in connection with isotropic
cylindrical shells by Kempner (5), agree closely to the results obtained from a
more exact theory, in most cases of technical interest.

DERIVATION OF THE GOVERNING DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS

The cartesian coordinates which describe a circular cylinder of radius a
are:

X =a cos$®
Y = a sin (2.1)

Z =x

Eq (2.1) has the form of Eq (1.15) with the variables d = xand p =¥ . The
metric coefficients can be computed from Eq (1.17). The square of the line
element in this system of curvilinear coordinates is then

as® = ax® + a® ay? (2.2)

The strains of the reference surface given by Eq (1.23) became for a
cylindrical shell (recalling that R; = 60)

€10 = u‘o,x

1 w
€x=3V, *a (2.3)

)‘ =V + i u
120 O’x a O,(P

Donnell (6) proposed the following expressions for the changes in curvature
by neglecting certain terms in the general expressions.

(2.4%)




Stress-resultants and stress-couples are formulated as described in the
previous section. These expressions for a cylindrical shell are:

- ‘ \
r N rA1l Al2 A ( uo,x { Dﬁ Dlg Dlg r Y3 xx
= | A 2v +¥ 1 . | b px D Ly
Ky 12 22 A% || & Vo, T2 18 DB D[] TFwe
N A v+ &u D D D_ ¥ gw
| Txe) | 16 A A66J 0,X & 0,9 15 D 6@} | 27 xy |
(2.5)
( Mx Dﬁ DJE Dlg uo,x ] D11 Do D¢ ( Vs xx
v 1
My = | D3 D2 DF al"’o,np T3 | 7 | P2 P Pagf| Fww
2
| Mx'ﬂ { D, D& Dgb 3 Vo, x a 0,9 { Dig Do D66‘ . 2 xe |
(2.6)

The five equilibrium equations, which are also modified by a Donnell approxi-
mation, supplemented by the compatibility condition for the deformed reference
surface of the shell constitute the determinative system of equations for the
problem. These equations are:

1

NxtaTg,p =°
Nxt’,x"’%n",? =30
U,x * 3 Qe * S Ny + q, =0 (2.7)
Mx,x+%Mxlp,ap -sto
xcp,x+%M?,qp - Q'f=°
g €0, * ? €000 - 5 v:zo,x‘p =0 (2.8)

In the equilibrium Eq (2.7), the only external load which is considered is the
normal load qz. Q4 and Q' appearing in the above equations can be eliminated by

16
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appropriate differentiation and subsequent addition of the fourth and fifth
equilibrium equations using the third equilibrium equation as an identity.

2

1 N
Mo * & Mg g T2 e I (2.9

It is convenient to treat the transverse deflection w and the stress-resultants
Ny, Ne¢» Nx' as the primary dependent variables of the problem. Equations (2.5)
and (2.6) rewritten in abbreviated matrix notation are:

N=A€ -DYX (2.58)
M= D*eo - DX (2.6a)

Inversion of Eq (2.5a) gives:

€ - m+ B (2.10)

where B is the inverse of A.

B= A B By, By (2.11)

The components of the symmetric B matrix are:

[ Aofes = %26 Aras = Arzhes Ahog = Mghzp |
B = -lq Aphes - Ao Aris - At
| Mk " M2 |
where &, is the determinant
An A A
B, = |42 A 2
Mo P Hes

7




Substituting Eq (2.10) into Eq (2.6a) gives:
M= bN + a) (2.12)

* * %
where b= D Band d=D B - D.

The components of matrix b are:

b b bl6

L by P Py - (2.13)

Y61 P62 g6

F

4

DY B..+D.B_+D B D*B._ +D.B._ +D_ B, D.B., + D .B_ +D B, ]
11711 12712 16716 ° T11712 12722 16726° T11°16 11726 16766

DB, + D B, +D.B DY B .+ D B, +D.B D B, + DB _+D B
12711 22712 26716’ T12712 22722 26726 T12716 22726 26 66

%* + %* + % B »* + %* = * * + * +D* B
DigBy1 * DogBip * DggBig 5 DygByn + DogBop * DggBrgs  DygBig + Dog Bog*DggBeg

.

*
It should be noted that b is not symmetric, i.e. biJ # bji. The BD matrix
appearing in Eq (2.10) is defined as b', the transpose of b. The components of
the symmetric 4 matrix are:

[ 4, 4y 4
a = dp &y dy (2.14)
| %6 %6 %6

where

* * _% * % * 2 * % * 2
d)y = Dy3Byy * 2Dy DB + 2Dy DygByg + Dyp By, + 2D D1 cBog ¥ Dyg Bgg - Dyy

* * * 2 *  * * % * _*
= D 30358y, ¢ + DyoDygBig + Dyy PopBio * DypDProBon

dyp = DyyD35By; * Dyp By

* _® > _» % _* * _*
+ D16D22B26 + D11D2631.6 + D12D26326 + D16D26366 - D12




a.. =D DB +D B, +D % +D*D*B +DD
16 11716711 16 12 16" 16 1726712 26
+ DyeDagBags + DyaPgeBis * DioDgsBrs * DyglycBss - Dig
* 2 . * 2
dyp = D)5 By, * 21’12”22312 + 2D12D26 16 + Dop Bap * 20, 26 26 * Des Bgg = Do
* ¥ * * *
dog = D ,DygByy + DygDpoByp + D1ePacBis * D1zPacBio * DosPacBon
+ Dzs B * D) D66Bl6 2D66326 + Dae”ss”ss - Dy

=D 2B _ +2D.D B, + 2D D B., + D 2B + 2D D B, +D.%B,, - D
dse = D15 By 16226812 16%6P16 * Pog Boo 26266826 * D Bes - Dse

By way of recapitulation, Eq (2.10) and (2.12) are restated in temms of the
camponents of the property matrices defined previously.

B
€10 = Uy x = Bylly * Bolly Bl6Nx9 B W t PP ? Vigp * 20 3 2 Yoxe

0,X
€. =1v +¥ B _N +B_Ny +B_ N, + blw,  +bl 1w
20 a oy a 12°x 22 26" xyp 21 ’xx 22 27’4y
1
* 2% & Yxe (2. 108)
1
*120 ot vo,x ; \‘lo"v = Blsnx + B%N,‘ B66N ¢’ bslw, + b62 -] w,"
2by
L,
a x¢
a 24
M =b N +b N +b N, +d.w,_  +—22w s B, (2.12a)
11'x 12 16 x¢ 117 2 pP a ’ xep §

a 2
22
Mo = Doy * Yool * Poglxg T Wk T T Vv YT Yoy

4 2,
qu =Pe1Mx t ey * b66Nx9 Yo t :5_ Vit w’x\’

Introduction of the Airy stress function U defined in cylindrical coordinates
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1 1
Nx = :2' U’qv b N? = U}n 2 NX‘P = - E U)x9 (2'15)

which identically satisfie 3 the in-surface equilibrium equations, the first
two equations of Eq (2.7), reduces the governing system to two primary dependent

variables. Substitution of Eq (2.10) into Eq (2.8) using this definition of the
Airy stress function gives:

5 u ) 2B,¢ " . (21312 + 366) ’ _ 2B ¢ ’
22 77 xxxx a I xex a ’ XX a3 ? xypoy
By (285, - byg)
+ :ll»_ U,??"" + b12 W, + . W,XJD!Q (2.16)
(b,.+1b.,_ -2b.) (2v,, - ) b
11 22 66 61 26 21
t ——— ;’2 w, xx"’ + _——a3 w,x?'? + ;T].— w,,,"’?
-1 W, =0
a 'xx

Substitution of Eq (2.12) into Eq (2.9) again using Eq (2.15) gives:

o v, 62"t (Pt R - )
12 " xoox a ? xocx P e ? xx¢e
(2b,. - b_) b ka
61 26 21 16
+ U. + U. + 4., w + W
t4 ? 2
53 ’ xppy aE revy 11 Vxxxx & XXX P
2(dy, + 26g,) g %
12 2
+ W, + — W, + W, (2.17)
R XX QPP ad X9 aE ory
1
“a Upx "

Equations (2.16) and (2.17) constitute the generalization of the Donnell
equations of cylindrical shells to include the effect of anisotropy of the

individual laminas. The presence of both dependent variables indicates coupling
between membrane and bending effects.

The boundary conditions are given by Eq (1.33). They are sumarized below
to complete the formulation of the cylindrical shell problem.

20




I II
Force Boundary Conditions Displacement Boundary Cond.
1 (%, - Nn) (un - un)
M M
nt = nt -
2 Moe * 5 = Tyg - R ) (ug - up)
3 (, - ) v, -2-P
y == -
n n An n Rn
1 o= =
+ = - -
i (Q i Mnt,t Vn) (w - w)
(2.18)
where
Nn - normal force
Nt - in-surface shearing force
Q, - transverse shearing force
Mn ~ bending moment
Mt - twisting moment
Vnp - effective shear given by
1
vn = Qn + An Mn'l;,t
un - normal displacement
u; - tangential displacement
w - deflection normal to surface
\Y - angle of rotation in the normal direction given by \Ys i—n- = - i
’n R
n

An - metric coefficient associated with the contour.

Bars over the quantities signify that they are the prescribed values at the
boundaries.

Since the governing differential equations involve U and w, the boundary
conditions must be expressed in terms of these variables in a given problem.

21




DETERMINATION OF STRESSES IN AN INDIVIDUAL LAMINA AND
INTER-LAMINAR SHEAR STRESSES

The stresses in the "k-th" lamina of & shell are given by Eq (1.6). They
can be written in matrix form using the primary dependent variables U and w by
substituting Eq (2.10) into Eq (1.22) and in turn into Eq (1.6). The expression
for stresses in matrix notation then becomes:

e b

o= (k) y4 (t(k) - zE(k))X (2.19)
where Ux(k)
0= [og ®
. ()
3 x’
and H
«5) L5 5
(20 (0 4 JJgk)'
oK) . T2ng) o 29‘) 7 aék) "
L 18 2l Tsék)‘
R N e M L e W e W2 W

E(Ek)Bllﬁélai)Blz"'Egg)Blé ’ '6(121‘)3]2+'6(2§)322+'686‘)326 s Egzk)Bls*E(ag)Bes‘*E(zg)Bss

E(llg)nnﬁgg)nmféég)nlé , E%)Blaﬁ&‘)naaﬁgg)s% 5 E%)Bmﬁg)B%é%)B%j
' (2.20)

and 1) 25,

(
SR

e 1"2(1]‘) taék) tzgk) -

teg) ey gl

t J |




(k). =(k), (k) k), =5(x).  ,=(k) =(k), _=(k). =k

( C117P39%C 5 Py *C g Ry 5 Oy by 4Cn B0 *C g b 5 Cpy b<§~1+c§2 b62+°§.6)b66
=(x). _=(x) (k) =(kx). ,=(k) =(k) = (k) =(k) =(k)
C1o 01300 P11 Cog " Pyg 5 Cin'Pug 0o PantCog Doy 5 Cip g +C0, g a*C50 "ogg
=(k), L =(k).  =(k) (k). 5(k),  =(k) (k). =(k), =(k)
C16 P11*C55 P12%086 P16+ Cl6 Pa1*Cas Pau?C6 P26 » Cl P61"C26 P62*T¢s D66 |

It shoulA be noted that T(k) and t(k) are unsymmetric. The stresses written

explicitly are:

k k
o(k)—TL(L)U + 0 (9 y -Tlé)U + (5,9 g5 (K
x B 4 44 12 ? Xx a ‘x¢ 1 1 M
(x) = (x k) _ = (k (2-19a)
. (tm ) -) zclé )) vige * 2(tlé ) . zClé )) v
a.“ , a X?
k k
AL TTag ! U sy, - ___th(s ) U, + (5,89 - g5 (¥
¢ = a {4 22 T xx a ’x.‘) 21 z 12 W,
(tegk) - ZEe:g.k)) v . 2(t2¢(5k) B Zaaék)) w
a.2 44 a ’ xy¢
(x k
T (k)—Tél)U + 1K)y -—T6é)u + (68 L gg (K)y
X - 82 P 62 ? xx a ? X 61 16 2
k = (k = (x
. (65 - T,8) o 2(tgg) - ) :
= Ll 2 x4

Although transverse shear deformation is neglected in the theory discussed,
transverse shear resultants can be detemined from the equilibrium equations,

i.e. the last two equations of Eq (2.7), and are defined as:

n

by n h
o = ? | (9 g, Qg - Z /" T‘Pik)dz (2.22)

k=1 hk— 1 k=1 hk- 1
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In terms of the primary dependent variables U arnd w, these transverse shear
resultaents are:

. 2y L (ou - Bge) L Bo2 = Bag) L
% a3 Pee 2 ? X a T xxy 12 77
df)6 (d- + 2d. ) 34, -
2 12 66 15
*;T"’m +—_a-2——w’xw 4 Yrixxe T %11 Vi
(2.23)
QW = -.?é U + (bél y 026) U + -——-——————(b‘e2 _ béé) U +b., U
4 a3 T a.§ Txyy 2 ? xx¢@ 62 Txxx
d. + -~
22 L 26 Ll rg)
2 444 a_-5 ? Xy a Txxep 16 "o

The inter-laminar shear stresses ‘rxgk) and T",(,k) are formed ty consideraticn

of equilibrium in the x and ¢ directions. Summing the forces in the x-direction
up to the (k-th) layer gives:

k h

< (k) _ \ (o (3) , 1 4 (j))dz-l-'r

Xz — . X, X 2 xX¢,p Xxzo
d=1  hy (2.24)

k h
(x) \" ! 1 (3) (3)

Tz T [ G o, T Tx¢,x ) dz + T¢zo

j=1 hj-l

Here Ty;o and T ;o are constants to be adjusted by conditions at the top and
bottom shell surfaces. Using Eq (2.19a), these expressions become

k h
o J (T (x)_ o (k)) (T('j)- T('j))
Txgk) = \_. [‘ [Tlgj) U’xxx+ = a £ U bo {7 <= 2 = U,x”
=1 hy, 2
(J) (3) , (3) =(J)
T (2t +t - 32C
+ ig U""'Q + (tl(lj) - Zalg-k)) w’m + 16 il i 16 ) w’xle
(2.25)
X (tlé'j) + atééj) ; z'élg") - 22662'))) . +(t6éj)' zEGgJ)) -
X Xy as Mad
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k n (3) (3)
(x) o > fj T (3) U . (T22 - T66') ) .
9z - h 62 ? xxx a ? x0up

J=1 J=1

* la2 X + a3 Ugwp * (tégd)- zcléj)) ¥ 3o

(26,.83) 4+ ¢ (3) | 2,5,08) | 5 (9D
b 66 1 . 12 Y e (2.25)
* 22 Vixep ) b L ¢ a

25




3. EQUATIONS FOR LAMINATED ANISOTROPIC PLATES

An important area of application is that of laminated anisotropic plates.
In this section, the general equations of Section 1 are specialized for rectan-

gular plates.

DERIVATION OF THE GOVERNING DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIORS

ol =—

Figure 3.1
A plate is defined as a shell with no curvature; therefore, R} = R; = ¢©
and the line element is given by:
P dx2 + dyz (3.1)
where the change of variables of @ = x and p = y from Eq (1.16) has been made.

The reference surface strains given by Eq (1.23) reduce to the following
for a plate:

€xp=" (3.2)

Xy =y (3.3)




The stress-resuitants and stress-couples, defined by Eq (1.26) and Eq (1.27),
ror rectangular plates become:

[ 5] (41 A 2] [ Yox D,# D% D3} [ v,
Tl = |22 %2 A Vo,¥ - | %2 D5 D2 Vigy| (3:%)
| Yy |46 %26 %6 | Yoy T Vo,x) Dif P2 Df) | #rxy)
s ¢ : ; : : :
M D% D3 D* u o (D, D, D [ v
Mol = P8 D2 DAl | Vor = | P2 D2 Py Wyl (3:5)
{M}W‘ ‘Dlg D% D’gj { uo.y+vo.xJ 'Dlé D D66‘ { 2w,ny

where Aij, D’i*J, and D;; are defined by Eq (1.30).

The three equations of equilibrium for the plate element supplemented by
the campatibility equation for the in-plane strain components at the reference
surface of the plate constitute the determinative system of equations. These
equations, as reduced from Eq (1.31) and Eq (1.32), are

N + N 0 N + K 0 .6
X, X XY,y = ‘xy,x Iy = (3.6)

M +2M -q (3.7)

+ M =
X, XX Xy, Xy I Jy

€ =0 (3.8)

+ -
10,5y eEO,xx 120, xy

It is convenient to regard the transverse displacement w and the stress-
resultants Ny, , and Ny a8 the primary dependent variables for this system
of equations. e mament and reference surface strains can be expressed in terms
of these variables in the same manner as for cylindrical shells.

4 1 4

ur;,x Nx F "’x::1

?
+ .
VO,Y = B Ny b V)yy (3 9)
+ ow

uo,y vo,x L NW ,W

\ J




M, ) [N W,
X X XX
M = b |N + a| w . 1
y y ‘yy (3.10)
M N 2w,
| | | xy xy

L}
vhere B, b, b, and d are defined by Egs (2.11), (2.13), and (2.1%). Eq (3.9)
and Eq (3.10) written explicitly are:

1 L ]
€lO " Y,x " By N * BlZNy * BléNaqr MR AL A ¥y 5 2bl6w’:qr
L} 1 1]
€20 = Vo,y = Buoly * Byl + Byl *+ DyVy o+ by¥s  + 2oy, (3.9)

1
¥ = Yoy ¥ Vo,x = Bislx * BNy ¥ BeglNyy * Do * Pgryy * eV

= 2 +

My Byyl, + b12Ny & blexy 4y Moy ¥ d12"’yy * 2d16"":qr

My = by,N, + b22Ny + b26ny a0t d22w,yy + 2d26w,xy (3.10a)
= + + + +

Introduction of the Airy stress function U defined in rectangular cartesian
coordinates by:

N=U N, = U Ny == U oy (3.11)

which identically satisfies Eq (3.6) reduces the determinative equations to two
1(>r1ma.1)'y dependent variables. Substituting Eq (3.9) into Eq (3.8) and using Eq
3.11) gives:

B

22U

- 2BV, + (21312 + 1366)0, - 2B,V + B,,U,

ple’e’s'd Yy L Tyyy

* DY oo t (2b62 = bl6)w’x:n:y + (bll * by - 2b66)w’xxyy

+ (2b61 - 26)‘" + b,,v, =0 (3.12)

28




Substituting Bq (3.10) into Eq (3.7) again using Eq (3.11) gives

12U yoex * (2vg, - bl6)U’xxxy * (bll * oyp - 2b66)U’xxyy

+ (2bg; - byl +bag, (3.13)

+
Xyyy b21U’ Yyyy * d'llw’xxx:x

+ 2(d12 + 2d66)w, + ud26w,

] = -
X7y xyyy * %2 yyyy T 7 9

Equations (3.12) and (3.13) are the generalizations of the Poisson~-Kirchhoff
equations to take into account the orthotropic properties of the laninas composing
the plate. The presence of both dependent variables in each of the two equations
indicates coupling between the in-plane forces and the deflection surface.

The boundary conditions, given by Eq (1.33), are summarized below to complete
the formulation of the plate problem.

I II
Force Boundary Conditions Displacement Boundary Conds.
1 (Nn - Nn) (un - un)
2 (Nnt - Nnt) (ut - ut)
(3.14)
3 (- M) CARERT
i (, + Moy " V) (w - w)

where
N, - normal force
Npt - in-plane shearing force
Q, - transverse shearing force
Mp - bending moment
M,y - twisting moment
\' - effective shear given by

= +
vn Mnt ,t




u, - nomal displacement
ut - tangential displacement
w - transverse deflection

W,n - slope in the nomal direction.

Bars over the quantities signify that they are the prescribed values at the
boundaries.

In each of the four conditions, either the barred quantity in column I or
IT must be prescribed. For that force or displacement which is prescribed, the
bracketed quantity must vanish. This means that the unbarred quantity (that force
or displacement from the interior of the plate) must take on the prescribed value

on the boundary.

The boundary conditions corresponding to the physical restraint may be
thought of in termms of those of the usual conditions for a bending problem
(conditions 3 and 4) and an in-plane problem (conditions 1 and 2). Certain
plate problems may be decomposed into these two separate problems and treated
individually. However, in general the problem must be treated as a combined
bending and in-plane problem since U and w are coupled in the governing differ-
ential equations and in the boundary conditions.

Some examples of boundary conditions for a rectangular plate are:

Clamped Edge - In a plate with a built-in edge both displacements YUy and
Vo, the deflection w, and the slope w,pn are zero. This conditlion along the x
axis is

W = 0 A W, = 0
y=0 y=0
(3.15)
u‘o 20 3 vo e
y=0 y=0

Uy and v may be expressed in terms of U and w in a specific problem by the
integration of Eq (3.9a)

= + - + + + +
u f (Bllu,w B12U’xx BlﬁU,xy b, Wy belw,yy 2b61w,xy) ax fl(y)

= - +
v, f (Bl2U, yy+ B,oUs o BygUs :w+ Vs ot baav,w-l- 2b26w,:q) ay fz(x)

The arbitrary functions f,(y) and fo(x) may be evaluated by differentiating
u, with respect to y and v, wi%h respect to x and substituting into the third

Eq (3.9a).
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Free Edge - Along a free edge of a plate, the in-plane and transverse forces
and the bending moment vanish. The displacements and slope, however, are une-
specified. Along the x-axis, this condition is

M =0 A = + M 0]
y M Qy y X =
y=0 y=0 y=0
(3.16)
N, = U, =0 N -- U =0
y=0 y=0 ¥y=0 y=0
My and Vy may be expressed in tems of U and w by Eq (3.10a) and Eq (3.21).
Mol = PogUs o Dools ™ Pagliay™ st dpols yyt 2505 oy =0
y=0 y=0
(3.16a)
vy = b2lu’yy',sr * (2b61 - 26)U’xyy + (b22 - 2b66)u’xxy * 205005 poex
y=0

* d22w’yy'y + hd'26"”xyy + (d12 * ud66)w’xxy i d16""’x:c:x| =.0
y=0

Simply Supported Edge - A simply supported edge permits rotation but no
deflection. Since it is free to rotate, the bending moment is zero. For the
in-plane boundary conditions, either a fixed (pinned) or a free (roller) condi-
tion may be prescribed depending on nature of the restraint. For a roller

support which produces no in-plane forces along the x-axis, the boundaiy condi-
tions are

w =0 A M =0
y
y=0 y=0
(3.17)
N = U’:oc =0 ; ny z= U’xy =0
y=0 y=0 y=0 y=0

My in terms of U and w is given by Eq (3.16a).
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DETERIINATION CF STRESSES Il AN INDIVIDUAL LAMINA AND
INTER-LAMINAR SHZAR STRESSZES

The general expressions for the stiresses in the "k-th" lamina are given in
B3 (1.6). For the plate, this equation in terms of the primary dependent vari-
ables U and v becomes:

{ (k ) ) . §
N ) i Us oy LI
°§,k) = (%) b |+ (+{E) _ 55(%)) Yy (3.13)
T (x) -U ow

\ Xy ’ > ’W \ ,xy J

where T(k), t(k), and _C_(k) are previously Gefined by Egs (2.20), (e.21), and
(1.12), respectively. Equation (3.13) written explicitly are:

°>(<k) = Tlg.k)u’yy * Tlﬁ:’k)u’xx ) Tlék)t s (8 (k) ) ch(l ) Y xx
+ (tlék) - z-élék)) Voo + 2(t1c(3k) - “Cl((ak)) L
oa(rk) = 2(11‘) ,yy + T2£k)u,xx - 'raék)u,xy + (t (") z_élék)) L. (3.18a)
+ (ta(k) - zCa,(\k ) o + 2(t2((5k) - z-éeék)) Y1 xy
(k) - (k) o (k) (k) (k) =(x
xy Ts d’yy T2 Urex T Tes U’xy * (tél - ‘Clé )) Yo xx

+ (g, (k> - zC, (k)) Vigy * e(téék) - zﬁéék)) Y xy

Although transverse shear deformation is neglected in this theory, transverse
shear resultants can be determined from equilibrium considerations. The result-
ants are defined as:

n hk n hk
- —

3 = f Txik) az = [ ‘y(zk) dz (3.19)
k=L k=l by
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These stress resultants are determined fram the moment equilibrium equations;
i.e., the last two expressions of Eq (1.31):

L =4 + M

X X, X XY, ¥

Q, = M + M .20
Qy XY, X ¥ (3 )

Conbining these equations with Eq (3.10) gives:

= b. + - - + - N
A QJl.l‘f‘y-y-y (bll D'oo)U’xyy (bbE bl6)U'xxy * DU o

+ R + 24.. + ~
d&o " yyy (dJ_Z + ‘d’oo)w’xyy 3cj'lov’x.:c,y * d'llw’ XXX
(3.21)
A= + . 2 + - b,
v 05,V vy (v 1 bdo)U’xyy (b.22 boo)U’xxy * 05U o
*a o * ey T (dlz * 2wy =Xy * 6% e
=~ X
o (I
¥
. 2 %, %
¥ o
(2)
._l:lx,x dx

—— o ————

Tl ——————

Figure 3.2




. (%)

The inter-laminar shear stresses iyg and T gk) are found by consideration
of equilibriuwn in the x and y directions. Figure 3.2 shows only the change of
the stresses in the x ard y directions. Summing the forces in the x-direction
up to the k-th layer gives

J
oo T e e

xzo
j=1 hJ 1
v 1 (3.22)
< (B) . ‘/Q (0 (J) ‘T (J)) iz + T
NgA XYy X yzo
h

lere Ty, and Tyzo are constants to be adjusted by conditions at the top and
bottom plate surfaces. Using Eq (3.18a), these expressions become

k h,
Txgk) e jj ‘[‘ Tl( )U, + (z (J) (J))U, S (T ( ). o (J))U -
=1 hy_y
(3.22a)
i T\Sg.j)u’yy'y+ (t, (J) 28 (.J))w,xxer (2t,¢ ( Jm ts( 3. 35 (j))w’xxy
+ (v, (s 2 éd)- zclé’) 2zC6(J))w eyt <t5§3)~ z56éj))w,yyy
k h
Tyik) - /‘ Tégj) Ut (Tzéj) (J))U v (T (J) 2é.j))U’xyy
5=1 h,_
i ngj)u,yyy+ (t6§j)- zEléj))w,xxx+ (2t ( )+ taga)- 2z66é3)-z6§g))w,xxy
+ (toéd)+ 2tdéj)- 3zEgé))w,xyy + (teéj)- Zaagj))w’yyy dz (3.22v)
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4., METHODS OF SOLUTION

Several methods of obtaining solutions to the plate Egs (3.12) and (3.13)
are discussed in this section. First, a method which involves the combination
of two fourth order equations into one eighth order is indicated. Then, iterative
and perturbation schemes are discussed as other possible methods of attack. For
special orientations of the individual laminas, the differential equations for
rlates and shells simplify, and an extensive amount of information for solving
these simplified equations is available.

REDUCTION OF THE COUPLED EQUATIONS TO ONE EIGHTH ORDER EQUATION !

A possible method of solution of the coupled system of equations is to
combine the two equations into one eighth order equation using the technique
which Vlasov used to solve shallow shell equations (7). For convenience, Z2qs
(3.12) and (3.13) are rewritten in operator notation:

Lgl‘) (u) + Lg‘) (w) =0 (4.1)
i ()« Y ) = -4 (4.2)
where operators L:(Lh) 9 Lg"') 5 Lgu) are the following fourth order operators:
L(l‘)=B E’h - 2B ."u + (2B, + B )——-ée’h - 2B abr
1 2e ::-cE 26 &3x3 oy 12 66 bx2 oy 16 ox O}}
" (4.3)
o]
R B
oy
L(“)=b i.+(ob - b )—-—al+ + (b,, + b, - 2b,) au -
2 12 & 62 16 ox3 & 11 22 66 exé a-ﬁ
a“ R
+ (2o, + b,.) =+ b, —T
A1 25 X ay° 21 oy“‘
L i i
(%) _ o . d
Ly oy F Mg o3t Al Y Rgg) —ae
Ef* a'“
+ bLq + 4.
26 3% ay3 22 g;l

If there exists a function @ such that




v =1 (§)

(b.4)
- - 1M (§),
then Eq (4.1) is satisfied identically and Eq (4.2) becomes:
2 @) - {[1£7]7- 40438 - =
where Lﬁs) is the following eighth order operator:
H‘f” = |}§2 - dn B22] ':'EB + 210y, (8vgym big) + dy, By 2‘11632% g%
[ Pyp (Byy + Dy - Fgg) + (2b§° - byg)” - 4y, (2B, + B
8a 6By - 2dy, + 245) Bee] axz 32
+ 2[1:12 (2b61 - 'b62) + (2v 5 - 1:116)(13ll + b, - 2'b66) +4d,,B¢
-2d,. (.21312 + 366) + e(d12 + 2d66) By - 2d¢ 1322] S;aereys
o [21712 by + 2(Bbgy = b (@b = byg) + (b + by, - 2b66)2
- duBll+ Sdlem- 2(d12+ 2d66)(2B12+ 366) + 8526326' d22322] a—-j;le?yu

+

s [bel (205, - Big) + (2bgy - )by + by, - 2bgg) + dpy Byg

8
- d
2d,¢ (21312 + 366) + e(d12 + 2d66) B - 2d1613n] &3—5 (4.6)

+

2
[2b21 (b)) + by, = 2bgg) + (2bg) - bye)™ - &y, (2Byg + Byg)
8

+8dy, By + 2(a), + 245¢) By, —_‘652
xay
+2|b,, (20.,- b, ) + B. .- 2d4,.B 88+ vo, - 4, 38
21 (2Pgy- Pog) + A58 4 24,0B) = oy byy = 9poByy N

36




The solution of Eq (4.5) may now be separated into a hcmogeneous and a
particular solution. The particular solution should satisfy the loading condi-
tion but may not necessarily satisfy the boundary conditions. This sclution may
be determined by the use of trigonametric series. The hamogeneous solution must
be such that the sum of the particular and homogeneous solutions satisfies the
boundary conditions. The latter condition mey be satisfied in the same manner
as that used by M. Suchar (8) to determine influence surfaces for anisotropic
plates, or by other means.

ITERATIVE SOLUTION OF THE COUPLED EQUATIONS

Since Egs (3.12) and (3.13) are based on small deflection theory, the
coupling between the in-plane stress function, U, and the lateral deflection,
W, generally will have a minor effect on the solutions. Hence, as a first
approximation, the system can be treated as an uncoupled system by cmitting from
the equations the termms which contain the bj4 coefficients. Then, by substituting
the first approximation into the tems contalning the b; 3 coefficients, a second
approximation may be obtained. The process is then repeated to obtain higher
order approximations.

Adopting the operator notation used previously, Egs (3.12) and (3.13) may
be written as:

M (u) = - 18 ) (5.7)

M ) = - a- 1Y () (4.8)

where n represents the order of the approximation, w, and Up being equal to zero.
It can be seen that this system is effectively uncoupled since the higher order
approximations of one variable are coupled to the next lower order approximation
of the other variable. Hence, the methods of solution applicable to the uncoupled
equations given in the literature and swmarized below may be applied to this
system of equations.

Since coupling also exists in the expressions for moment and for in-plane

strain, Egs (3.9a) and (3.10a), which are used in stating the boundary conditions,
these expressions must also be rewritten in iterative form:

1)
= + - +
uon, x Bllun,yy Blzun,xx Bl60n,xy bllwn-l,xx+ bl2wn-l,yy
1
+2b. W
16 -L,xy
(4.9)
L} ]
=B U _+ - +
von’y Bl2 n,yy B22“'11,:::: B26Un,:qr b21 wn-l,xx+ b22 wn-l,yy
, .
+ 2b

26 wn-l, xy




'
+ b

u + v = B, ..U + B,- U - B u w
B, & %, x 15 n,yy¥ 20 n,xx 66 "n,xy 61 "n-1,xx
2% ' ., ' (h'9)
* %% Ynel,xy T %52 Ya-l,yy
M o= + ’ + 23, + +
~ix_1 dll wn,:cc d]_;z Jn, Yy ad‘l:: wn, Xy 11 Un-l,yy bl2 Un-l,xx
LT Un-l,xy
(4.10)
Moo= a s + +2 + +
Iyn 12 "n,xx 92 o, ¥y 26 "n,xy bag Un-l,yy o Un-l,x'x
T U268 Un-l,..
= .Y + 3 . + 2 + 2 +
Mxyn d]_;s T, T %26 Yo, yy %55 “n,xy Bs1 Un-l,y'y Y2 Un-l,xx

T 936 Un-l,:qr

PIRTUR2ATION SOLUTION OF THE COUPLID ZQUATIONS

r many materials of practical importance, the individual laminas will be
lightly crthotropic. In such cases, the operators in Egqs (3.12) and (3.13)
te cnly slightly different from those in the equations for isotropic plates.
This suggests that such rroblems may be treated by a perturbation method of solu-
tion (9. 10); that is, the solution for a substitute isotropic material may be
used as a first approximation, and then successive corrections may be obtained

tc account for the orthotropy.

“n w

B
v i

To apply perturvation theory, Egs (3.12) and (3.13) are written in a form
such that they may be seer to be the equations for an isotropic plate modified
by small corrective terms. To this end, the following parameters are defined:

B B
- - 26
Vpg=-5 k¢ = B
B B
11 _ 1 66
kh=1--3 Y66 = 1" AT, B
5 . (4.11)
=1 .22 ]
koo =1 - =5 1578
B b
- _16 _ i
“15°F myy =




+
n =1_i n*=dll Dll
11 D 11
D.. + D
T S Bl
22 D ’ 22 D
D +
V= n*,d12 P12
D D’ 12 D
ooe1..2 DL 2 %6 D
66 I3, T’ 68 = -V )
D
' +
. 1 P Sl
15 D 2 1?; D
%6 =D ° B )

where B and D are the maximums of Bjj, Bpp, or 2Bjp + B44, and D3, Doy, or

D12 + 2Dgg5, respectively. This latter condition guarantees that the parameters
kij, Rij, myj, nij, and n;¥ are always less than 1.0 in magnitude. Four con-
stants have been used to de%ine the substitute isotropic material: B, vB’ D,
andd¥p . This has been done for convenience, since most problems will involve
either an in-plane stress problem or a bending problem. The number of parameters
has also been selected for convenience in the application of the method.

When Egs (3.12) and (3.13) are expressed in terms of these parameters they
became

(1 - k22)U’xxxx - 2k U’xxxy * [2 - 2(l+vB) k66] U:”‘YY (k.12)
- 2k16 U’W + (1 - kll) U’YYYY + 112 L LT + (2262 - E.I.S) w;m

+ ( fll + 222 - 2‘66) w:xxw + (2961 - £26) wxw +p21 w:m =0

m, U + (an62 - m16) U, + (mll +m,, - 2"‘66) U,
* (an6l - m26) U’:qyy *my U’yyy'y +* (- B nli) Y1 oo
+ h(nlé - nlg) W, + [l - n% - (1 -yD)(nsé + nég)] LEp—
a g

*boyg - ) Wy et (Lengy s 08w, =
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It may be seen that if the parameters ki 9 1‘1 m;j, Nijys and ni* are so small
that the terms containing them may be neglecteg the eq tions for isotropic
plates are recovered.

Since U and w may be considered to be continuous functions of the parameters
ki, 'ei,j: migs Dy and ni,j*’ they may be expanded in series in terms of powers
of the parameters. However, from a computational standpoint, this method of
solution is of practical value only when the terms containing squares, products,
and higher powers of the parameters are negligible. Therefore, the power series
expansions will be used in the following form:

U=U +k, U, +0,U

+ + * *

Bss Unig * 215 Ynig * 235 Unid
(4.1%)

= + + * *

4/ wo iJ li !':l:j 3 mij Wmij nij wnij + nij wniJ
The substitution of these expansions for U and w into Eqs (4.12) and (4.13)

results in the following sets of equations when the coefficients of like powers
of the parameters are equated:

(4. 15)

<
=
o
"
ko

Vv Y% = Y, yyyy

2Uo, (4.16)

q

o

&
n

= 2U
0, XXXy

4
=]
N
[#3%

|

= 2(1 +JJB) U,

<
VTC:
o
foN
[

hU -
Vv 11" T Yo, 0y

T Uy ® - Vo e (5.17)

V Upg =+ Yo, 3000y

Lo




b -
V Yoy T

v Yoo = -

Yo, yyyy
w
0, XXYY
L U -
V 26 = Yo,xyyy
b o - B
vV Y%e1 0, XY¥YY

|
V' Upgo = - 2wo,xaoty

L
YV Ugss = o, xxyy

o
&
'
o
§

= - hw

V Ynis 0, XXXy

k1

vh'wn*=w

L
Y Ynib "

(k.17)

(k.18)

0, XXXR

(4.19)

l&wo’ XY




L L

V' Vnoo T Vo, yyyy V' Vios = Vo,yyyy

L ca L *
V' v = - lmo’ Vv lwo,

N - b - (4.19)
V' vies (l-vD) Yo, xxyy v Vni2 Yo, xxyy

vh "n6g = (1- 1,D) Wo,xxyy

Equations (4.15) are the differential equations of the first approximation.
Equations (4.15), (4.17), (4.18), and (4.19) are the differential equaticns of
the corrective terms forming the second approximation. It should be pointed
out that the equations involving wyji, W g3 3> Uni' , and Um 3 have been cmitted
from this swmary since these equatigns are all oY the form v (w,U) = 0, and
their solutions are identically zero.

Since the elastic constants appear in the expressions for the bending
moments and in-plane strains, the boundary conditions for the above sets of

equations will also be perturbed. iWhen the bending moments are expressed in
terms of the perturbation parameters, they become:

/ = = o = = *
My D[mll U’yy tm, U - Mg U’xy + (1 n, nll) LI
- n %
+ (WD nla) w’yy 2 2nl6 w:xy]

U,xy + (vD - nl"é) Vi

Yy =i D[17'21 Uryy + Map Usyx = Mg

(4.20)
*(L-ny, -nX) v, o+ 2(nyg - n %) "’xy]

Mxy = - 1)[m61 U,W +mey Uy - Mg U’xy + (n16 - nlg) Vs
* (nyg = ng) W, + (1 - ngg - ng¥) "’xy]

These moments must now be expanded in the same manner as for U and w, i.e.

=M +Xk i i1 ..+ ., +n, M .. +n ¥®LM__¥
Ix X0 1\i,j I‘xk:i.‘] Iij Mx i} mij Mx‘.nn,j nlJ “xn:LJ nlJ Ix'm.,J

Substitution of the expansions for M, U, and w into Eq (4.20) leads to the follow-
ing sets of equations:
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e

Mo ™ - D[ Yo,xx T Yp wo,ny

Myo = - D[ wo,y'y + yD wo,xx] (4.21)

Mxyo = - D[ (1 - yD) wo,xy]

= - +
Mxmll D[ wmll, xx + vD wmll,yy Uo,yy]

Mymll =" D[ wmll,yy * z)D wxnll,xx] (4.22)

-D[ (1-1/D)w

M =
xymll mll, xy]

M}mll it D[ wnl].,:oc:c * vD wnll,yy - Wo,xx]
Mop11 = - D[ Ynil,yy ¥ a1y, xx] (4.23)

Moy = - p[ (1-2) wnll,xy]

Similar expressions may be written for the remaining sets of equations.

SFECIALIZATION OF THZ FLATE EQUATIONS FOR FARTICULAR ORIENTATIONS

The two governing £qs (3.12) and (3.13) can be specialized for certain
oriensations of the laminas composing the laminated plate. In the following,
the discussion is restricted to plates composed of laminas of identical thick-
ness. 'Two general cases will be discussed: pairwise orientation with symmetry
avbout the middle surface and spiral orientation. Methods of solution associated
with each of the cases are indicated, and wherever the equations have already
been solved, the literature is cite..

PAIRWISE ORIENTATION WITHE SYMMZTRY ABOUT THE MIDDLEZ SURFACE

This classification refers to a laminated plate made from pairs of the same
orthotropic laminas. The laminas are situated such that one lamina of a pair is
at the same distance above as the other is below the middle surface (which is
also taken as reference surface). The principal axes of both laminas of the pair
also run in the same direction.

This orientation uncouples the in-plane and bending effects since Di; always
vanishes. Equations (3.12) and (3.13) reduce to

-aBls U, +B U 80

B.. U - 2B U, + (B66+ 21312) U, 1 U o
.24

22 70 XxXxXx XXyy

L3




Dy ¥ X0 1+D161)’ xxxy+ (QD:L2+ 1‘1)66)"’ xxyy+ hD26w’ xyyy+ D22w’yyyy L7 q(:(c;y ) )
.25

Thus, the laminated plate is equivalent to € homogeneous anisotropic plate.

Further reduction of the A;; is possible by having two pairs of laminas
situated so that there exists symmetry about one of the coordinate axes (hence
about both since the material considered here is orthotropic). In this case,
which shall be called pairwise equiangular orientation, A;¢ and Apg are annihi-
lated, thus B,z and vanish in Eq (4.24). The equations in this case are
orthctropic in the in-plane forces and anisotropic in bending.

A special case of the above, when all the pairs are either at plus or minus
45° from a coordinate axis, further reduces the equations. The elastic coeffi-
cients become

= - 1

Ci1=Cp=% [011 T Cp At “066]

= 1 )
Cir =T [cll + 022 + .2012 - hc66]

+ for + 45°

G..=C., =14 [c, -c ]
16 = S 22 = Oy - for - 15°

- 1
Cec = % [Cn -2t Cea]

The corresponding elastic constants associated with the plate problem reduce to

Ay = Ay Mg =idgim O
Bla = B Big = Byg = O
D)1 = Dy Dyg = Dyg
Equations (4.24) and (4.25) become:
B, U, + (1366 + 2312) U, +B, U =0 (4.26)
D;,¥» + thsw, + (2D12+ hD66)w, + LtDl6w, + D)W, = q(x,y)
(4.27)

These equations describe a special form of plate, orthotropic in the in-plane
effect and anisotropic in bending.
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Another similar special case when all the pairs are running either parallel
or perpendicular to the coordinate axes permits simplification of the equations.
The elastic coefficients in this case are

'Ell =C cos” 6 + Con sin® o
'622 =C Ty e+cC,, cost o
Ce6 = 66
Cpp = Cyp

9 in this case is either 0O° or 90°. All the A:L and D;: survive except the
ones with subscripts 16 and 26. Consequently B¢ a.na Bx a}.go vanish. The
governing equations here are

B, Us + (1366 + 21312) U, +3, 0 =0 (4.28)

Dll w:m"' (2D12 + ,"*D66) w:m + D22 w:my . Q(x:y) (4.29)

These equations describe a plate which is orthotropic in both in-plane and bending
effects. Furthemmore, if there are the same number of pairs in both directions,
then A1y = App and Byj = Byp; so that Eq (4.28) becomes the same as Eq (4.26).

Several authors have dealt with equations of the same form as Eqs (4.24)
and (4.25) in connection with particular problems. Green (11) exhibited the
method of solution to these equations in connection with an aeolotropic single-
layer plate subjected to in-plane forces. ILekhnitskii (12), (13) also solved
the same pair of equations. Both these authors used a technique involving complex
variable theory. Pell (14) solved a problem of thermal stresses in a thin aniso-
tropic plate. Luxenberg (15) solved a problem of the torsion of an anisotropic
plate. Both of these problems were governed by an equation of the same form as
Eq (4.25). Other authors, for example Green and Taylor (16) (17), Green (18, 19),
Fridman (20), Okubu (21), Morris (22), have dealt with equations of the fom of
Eqs (4.28) and (4.29). They essertially used the same method as that used by
Green and Lekhnitskii. Girkmann (23) discusses the solution to Eq (4.29) using
a double Fourier Series in connection with an orthotropic single-layer plate;
his method will be discussed in Section 7 of this report.

When the equations are of the form of Eqs (4.24) and (4.25), the distribution
of stress near a hole in an infinite laminated anisotropic plate can be calculated
using the technique presented by Savin (24) or, for the case of a circular hole
in a laminated plate which behaves orthotropically, those presented by Green and
Ta.ylor( 17). Savin extended the Muskhelishvili method for the solution of plane
elasticity problems to solve the anisotropic plane problem for an infinite plate.
Since in the absense of transverse loads, the differential equations for the plate
and for plane elasticity are of the same form, the method is applicable to both
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cases. The determination of general expressions for stresses is not practical
since the stresses are determined from only the real part of the camplex poten-
tials which comprise the solution.

SPIRAL ORIENTATION

This classification refers to a layered plate made of laminas such that the
elastic axes are distributed in the form of a spiral. Only the case denoted as
equiangular spiral orientation will be discussed since all other cases are too
complicated to be investigated on a general level. The equiangular spiral
orientation describes a plate formed by alternating succeeding laminas from the
middle surface at equal but opposite angles (one positive and one negative)
from a coordinate axis. Each succeeding pair must have a larger angle than the
previous pair. For this case aILl*the A; 3 and Dys survive except those with
subscripts 16 and 26. All the D;; are ainihilatédd except for the ones with
subscripts 16 and 26. The determinative equations become

B, U, + (366 + 2312) U, +B, 0 + D2 (21312 - 366)

(4.30)

[Dlg (28,5~ Bgg) + 20,8 Baz] Y ey * [2”16 Byy* Do (2By5- 366)] Y xyyy
- D)y W + [nlg D} (8B ,+ 2B,,) + 4D ¥2 B/, + kD ¥ B,

(4.31)
= + - = -
(21)1_2 hD66)] W, D,, ¥ q
These equations are partly coupled since both dependent variables appear in the
equations.

The solutions to Eqs (%.30) and (4.31) may be found by raising the order
of the differential equations up to the eighth order as was discussed in the
beginning of this section.

SPECIALIZATION OF THE CYLINDRICAL SHELIL EQUATIONS FOR PARTICULAR ORIENTATIONS

The two determinative Eqs (2.16) and (2.17) can be specialized for certain
orientations of the laminas composing the layered shell. The following discussion
will be restricted to cylindrical shells camposed of leminas of the same thickness.
Suppose that the laminas are situated such that one lamina of a pair is at the
same distance above as the other is below the middle surface of the shell (now
taken as the reference surface). Both laminas have the same orientation of their
principal elastic axes. In this instance, the DiJ* always vanish. Accordingly,
Egs (2.16) and (2.17) reduce to

1322 U, - 2B, U’xxxy + (366 + 21312) U, - 2B U,
1

+BllU’ym-Ew’:o:=o

(4.32)




D.., w, + th6 W, + 2(1)]2 + 21)66) W, + lm26 W,

11
1 (L.33)
+ D22 w’yyyy+a U’xx =9,

In the above we have set

13 2
a 0@ oy

These equations indicate that the laminated shell is equivalent to a homogeneous
anisotropic shell. Further simplification is possible by having two pairs of
laminas situated so that there exists symmetry about the coordinate axes x, y.

In this case (called pairwise equiangular orientation) Ag = Apg =0, thus

Big = Bg = 0 in Eq (h.32). A further specialization results if all pairs are
situated at plus or minus L5 degrees from the coordinate axes. In this instance

A = Ay Ajg = Ay =0
By = By Big = Byg = 0
Dy = Dy Dig = D¢

Another special case arises when all pairs are situated either parallel or
perpendicular to the coordinate axes. The governing equations here take the fomm

1

Bn U, + (1366 + 21312) U, +B. U, TSV =0 (L.34)
; 1 .
D11 Yoo * a(D12 + 2.:066) w’mqry+ Do w’yyyy+a.u’:o: q, (4.35)

These equations describe a laminated cylindrical shell which is orthotropic in
both in-plane and bending effects.

Equations (4.32) and (L4.33), or the specializations discussed subsequently,
are of the general form

1

LU-Zw,_ =0 (4.36)
2yt v=q (4. 37)

vhere L, and Ly are fourth order linear differential operators in x, y. Special
forms of the operators occur for particular orientations of the laminas as
described. A method of solving equations of this type has been suggested by
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D + L‘D16 w, + 2(1)]‘2 + 2D66) W, + uD26 W,

1 (4.33)
+ D22 w’yy’yy +E U’xx =9,

11 Y7 oex

In the above we have set

13 9
a 3¢ oy

These equations indicate that the laminated shell is equivalent to a homogeneous
anisotropic shell. Further simplification is possible by having two pairs of
laminas situated so that there exists symmetry about the coordinate axes x, y.

In this case (called pairwise equiangular orientation) A;g = Apg = 0 , thus

Bjg = Byg = 0 in Eq (4.32). A further specialization results if all pairs are
situated at plus or minus 45 degrees from the coordinate axes. In this instance

Ay = Ay Ay = Ay =0
Bj1 = By Big = B =0
Dy = Dy Dig = Dog

Another special case arises when all pairs are situated either parallel or
perpendicular to the coordinate axes. The governing equations here take the form

S B -
B, U + (366 + 21312) u, +B, U T Wy =0 (%.3%)

Dll w,:DCGE + 2(D12 + 2D66) W, (4.35)

1
+ + = =
XXyY Do w’yyyy a U’xx 1,
These equations describe a laminated cylindrical shell which is orthotropic in
both in-plane and bending effects.

Equations (4.32) and (4.33), or the specializations discussed subsequently,
are of the general form

-1
L g 2V ” 0 (4.36)
A’U + L w = (h37)
a ‘xx 2 , *

where L, and Lo are fourth order linear differential operators in x, y. Special
forms of the operators occur for particular orientations of the laminas as
described. A method of solving equations of this type has been suggested by

k7
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Viasov (7). Assume the existence of a function & (%, ¥) defined such that

4.

U=+

w=Ll§

ihen Bq (%4.33) is substituted into Egs (4.30)and (4.37), the first equation is
identically satisiied, and the secord equation takes the fom

-] P

(L.:0)

)

(]

LlLeé +§ Q"xxxx=a-z (&

Stress-resultants, stress-couples or relererce surrace sitralins can be exyressed
in terms of § in a straight-forward oarner.

For the case oi a laninated orthotrcpic cylindrical shell, Egs (4.34) and
(4.35) are replaced by Eq (4.39) where Ly, L, take the form

.-+
1"l * B22( )’::x::x +(Bo(> 2312) ( )’m:yy & Sy ( )"yyy'y
(L. 10)
LoDy ( )’xxxx * ‘(Dl.? * 2D66) ( )’xxyy *Da ( )’yyyy
Finally, for an isotropic shell,
1 L
L =mV
(k.41)
3
L, = —— g )
< 12 (1-v7)
where
L

AR G P G PR G P

And Eq (4.39) takes the well-known fom

-

3 12 (1-¥°)
v é i ag h2 é:m = q. (4.42)

where E, 2 are modulus of elasticitly and Poisson's ratio and h the plate
thickness.




PART II: AFPLICATIONS OF PLATE THEORY

INTRODUCTION

Several applications of the general theory for laminated anisotropic plates
are discussed in this part. First, the equations of the plate theory are modified
for the cylindrical bending and extension of long rectangular plates so that solu-
tions may be obtained by integration or by transposition of known solutions from
beam theory. One example is given to illustrate & step by step method of obtain-
ing the elastic constants for a plate. Next, solutions are obtained by determin-
ing the edge loads which will cause the deflected surface to become a prescribed
quadratic surface. The following examples are given: uniform tension, pure
shear, uniform bending about one axis, and pure twist. As discussed under methods
of solution, for certain orientations the general equations reduce to those of
orthotropic plate theory. The solution for the uniformly-loaded simply-supported
rectangular plate is presented. As illustrations of the solution of general
equations by the perturbtation method, three examples are given: the clamped
circular plate (for which an exact solution can also be obtained), the simply-
supported rectangular plate, and the rectangular plate simply supported on two
opposite edges and clamped on the other two edges. Finally, the problem of
obtaining the optimum arrangement and orientation of the layers so as to minimize
the deflection in rectangular plates is discussed.




5. WEAX CYLIIDRICAL BERDIIG ARD ZXTERSION OF A ICIG
RECTANIIGULAR LAMINATED FLATEZ OF ORTHOTROPIC MATERIALS

A class of problems which deserves attention is that ¢f extensional and
flexural behavior of a long rectangular laminated plate camposed of orthotropic
naterial. VWhen such & plate is loaded by a system of forces which does not vary
in the y-direction, the deflected surface at some distance from the ends is
eylindrical (i.e., it is also independent of y). Therefore, the displacement
v is zero and the displacements u and w are independent of y. The plate may be
investigated by studying a typical elemental strip bounded by two planes y =
const. (Figure 5.1). In essence the problem beccmes one-dimensional, ard the
deflection curve resembvles that of a deflected beam.

PR — Y 4

I‘\.
<
n_.,__l_____

Figure 5.1

As a consequence of the type of displacements, Gy = 0 and vxy = 0. The
stress-strain relations given by Eq (1.6) simplify considerably for the elemental
plate strip.

o:(ci) = Elg.i) €x
, g,
1

(1) G, (1)
= 016 €x = T (1) C,x
11

. (1)
xy




Corresponding simplification of the expressions for the stress-resultants
and stress-couples may be seen. Equations (3.4) and (3.5) become:

= = %
l\Tx A11 uo,x Dll Yo xx
= =) *
N, =AU, o - DyAw, (5.2)
-D ®
ny = A16 uo,x Dl6 w’xx
- * -
M, = D)} Yo, x D)y ¥ XX
= * O
M =DjXu _-DpWy (5.3)

M’q = Dlg uo,x = D16 w,n

For this plate strip, the differential equations for the transverse deflec-
tion w and the in-plane displacement u, can be uncoupled. Two general cases of
loading will be discussed: weak cylindrical bending and uniaxial extension.

WEAK CYLINDRICAL BENDING OF A PLATE STRIP

Consider a simply supported plate strip of length L. The origin of the
coordinate system is located at the left hand side of the plate strip. The x-y
plane lies in the reference surface of the plate; the x and z axes are directed
to the right and downward, respectively, as shown in Figure 5.2. This plate
strip is loaded by an arbitrary system of transverse forces and moments M, and
M, at the ends. The in-plane force Ny is taken to be zero.

T qﬁxmm
1 = = — M,
, ——a X

v . Ve N =0

1 M = Mx(x)

|

|

z Figure 5.2
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Under the acticn of the external loads, the plate strir deflects. The
deflection curve can be determined in the following manner. Since Ky is zerc,
by setting the first of Eg (3.2) equal to cero, the follcwing relaticn between
ug and w is ctiained.

et
u = =—w, (5.4%)
] All b0 4
Substitution of the above equation into the first of 33 (5.3) gives
A
11 - =
w ¥ (x) (5.5)

» = =
= #)< o
(Dll) All Dl

Bquation (5.5) is the governing differential equaticn for the deflection curve

w and Eq (5.4) is the asscciated differential eguaticn for the in-plane rerererce
surface displacement u,. Equation (5.3) is of the same fomm as tke equaticn fer
the deflection of an isctropic beam. Only the flexural rigidities are different.

¥*

(D11)% - A3y D1y
A1l
isotroric beam. Therefcre. transposition of known solutions for isotroric bveans
with the corresponding loading conditicns is possible. The solution may also be

obtained by double integration if the expression for Mx(x) is known.

replaces the usual flexural rigidity EI cf the

The quantity

The solution to Eq (5.4) may be obtained by direct integration

D_* >
u (x) = 5 11 f ME) ay + k (5.6)
(o,P)” -4, Dy Yo

The constant k is to be evaluated from a prescribed boundary condition. The
boundary condition for u, can, however, be arbitrarily selected since it repre-
sents only a point fram which the displacement is measured. Only the derivative
Up,x Which is the in-plane strain is of any interest in this problem. Therefore,
let the boundary condition be taken as

L
L D3
u, (3 =—— M(E) ag + k=0 (5.7)
(D,1)" - A5 Dy ®
or 1L
D7 i
kim= o f M(E) ag (5.8)
(Dy3)° - Ay DYy S




Thus far the problem has proceeded as for the case of the cylindrical bernd-
ing of a single-layer isotropic plate strip except for the different flexural
rigidities. Now, however, unlike the single-layer isotropic plate strip, which
requires only a transverse bending mament My tc maintain the cylindrical deflec-
tion surface during bending, additional forte and moment components (M., N&,
ny) must be present to preserve the cylindrical surface for the laminated
anisotropic rlate strip. Unless these forces and momernts are developed at the
suppcorts, the deflected surface will not remain c¢ylindrical and warpage will
occur along the y-direction. These forces and moments may be computed fron
Z3s (5.2) and (5.3). The stresses may be computed from Zq (3.13a).

UNIAXTAL ZXTENSION

Consider the same simply supported plate strip with the coordinate system
as shown in Figure 5.3. At the ends of this plate strip an in-plane extensional
force of magnitude N is applied. The bending moment M* is taken to Tve zero
in this case.

—
-—4
[
vis
=

s
)\"

1

=7

Figure 5.3

Because this force is applied at the reference surface (which is also the
surface of tane cocrdinate plane x-y), the plate strip will not only elongate but
also may vend. This behavior occurs ovecause the applied force may not coincide
with the centroid for a tensile or campressive force (the point at which an axial
force causes no bending) on this section. The deflection curve and the extension
can be determined in a manner analogous to that used in the previous case. The
first of Zq (5.3) is set equal to zero, from which

u e w, (5.12)

Substituting Zq (5.12) into the first of Zq (5.2) gives the differential equation
~f the deflecticn curve Ww.




b3
Vi N (5.13)

XX 2
Ay D)y - (Dy3)

Again Eq (5.13) is of the same form as the equation for the deflection of
an isotropic beam. Only the flexural rigidities are different. By replacing

*
A1y Dyy - (D13)°
Ty for the anisotropic laminated

late, known sclutions from beam theory for corresponding loadings may be used.

EI of the beam equation with
D

The solution to Eq (5.12) is obtained by direct integration:
x
D
L1
uo(x) J

® All Dll

N

sdx  + k (5.14)
- (o1

Let the bourdary condition for the evaluation of constant k be arbitrarily
selected as

uo(o) =-k (5.15)

The reason for such & specification will be apparent shortly. Therefore k
is given by

k =k (5.16)

To maintain a flat surface during extension, a bending moment must be applied
to cancel the deflection caused by the in-plane extensional force acting at the
reference surface. Application of this bending moment may be thought of as the
transfer of the applied force from the reference surface to the centroid for
tension-compression of this section as shown in Figure 5.h.

reference suriace ~\

M)t
,ﬁ__... ___-..._........_i_ _ﬁ) centroid for

” tensile or -
i piaton - i e compressive force _ | X

M

ND_#

M, =
11

Figure 5.4
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Np ¥
To remove the deflection curve, a moment of magnitude My = AlJJ: is applied
at the ends. 3Swgerposing both solutions of w then gives the condition of a flat
rlate.

% = {: b 5.2
w(x) = w fx) v, (x) =0 (5.27)
and
D} ¥
uy (x) = "\) x+k (5.13)
d YT 4
bead L [(Dll, A Du]

The voundary corndition for Uopend is taken as

u (o) = kl (5.19)

%bend

so that for the camplete problem the displacement ug at x = o is zero. Therefore

1%e:xd = kl (5.20)
and
2

N (D, 1) ]
e (x) = . x+k (5.21)

send  |a, [ (0,0° - D Au]]

Tke superposition of uy(x) for extension and u,(x) for bending gives

(5.22)

o Al

As was mentioned previously the transfer of the in-plane extensional force to
the centroid for tension-compression of this particular section gives the same
result. The eccentricity of this centroid fram the reference surface is given

by the formula
D
M 1
ece 2 e B a—
N Dll

ok

(5.23)

when the load is applied at the centroid, no bending will occur.

i
\Ji

e s u.ff.‘” -




As for the previous case of cylindrical bending, additional restraining forces
and moments must be developed at the supports to prevent warpage along the y-
direction. These quantities are again computed from Egs (5.2) and (5.3) Stresses
are given by Eq (3.18a).

Table I is a summary of the cylindricel bending and uniaxial extension
problems.
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SUPERPOSITION OF SOLUTIONS

Many problems with different loadings and different support conditions may
be found by superposing the previous cases. As an example, consider the following

plate strip shown in Figure 5.5.

a(x) = kx

B
—{>
M '& R J'.'-]:,
a‘:_ === X
f \
I
I
E-_ L
r._ -—
]
i
z
Figure 5.5

This problem may be solved by superposing the cases of & transversely loaded
plate strip and bending by unequal moments. The bending moment for the bending

problem is

M, - Ml
M(x) =M + (=5—) x
The bending moment for the triangularly loaded plate strip is

2 3
kL x - kx
Mx(x) =_7_—_

w(x) for both cases can be obtained by double integration. Then these two solu-
tions must be superposed in such a way that

w,x(o) =0 and w,x(L) =0

These two conditions determine the magnitudes of Ml and M,e.

L
L_TkL _

Viglo) = - (M + M) 7 - 35 =
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Solving these two equations gives

k1> P
2 " 20

Mp=-35 ’

Note that these end moments are the same as that for the isotropic beam of
the same loading and boundary condition. Thus the soluticn could also have been
obtained by transposition of the isotropic beam solution.

EXAMPLE OF A PLATE OF 12 ORTHOTROPIC LAMINAS WITH SPIRAL ORIENTATION

Consider & 12 layer laminated plate of spiral orientation. Each lamina hes
thickness h and is oriented such that the principal elastic axes are at either
+ 459 or - 45° with the coordinate axes. Let the reference surface be between

the 6th and Tth layers as shown in Figure 5.6.

Iayer 1 +)+5° A
2 -ks® :
3 +usz - hg, 7 - -6h
L b5 h, kh
5 +hs° B
-+ 6 -b5° ~- _I-h »X
7 +4s° ! [ [ H h
8 -u5° f 2h
9 +45° : 3n
10 -us° J X bh
11 +45° : “h, Sh
12 -bs° " ‘ 6h
1
VA
Figure 5.6

In this example let the four independent parameters be E = E, k = 1. 2,
2= 0.3, and A = 0.42. The principal elastic constants are C;; = 1l.121E,
Cop = 1.3U5E, C1o = O.UOLE and Cgg = O.4T1E. The elastic constants C;j for the
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rotated axes are camputed using Eq (1.12).

For a lamina at + 450

.29 0.3 0.06
Eij =E 0.35 1l.29 0.06
0.06 0.06 0.41

The coefficients
and may be sumarizéd as follows:

[ 15,48 420 o |
Aij = Eh 4.20 15.48 0

| o} 0 h.92 |

( 0 0 -0.36 |
Dig = Eh2 0 0] -0.36

-0.36 -0.36 o )

( 185.76 50. 44 (0]

D, = B 50.4% 185.76 O
0 0 59.08
(1) )
With Ay , and Ds: known , b T , and t can be computed from
Egs (2. '11) Q2.13), a 20), z’mgi 2. 2i 1 13
[ 0.0697 -0.0189 o )
1

131lJ 5 -0.0189 0.0697 0

| 0 0 0.203 J

4 -

0 o] -0.073

bi‘1 =h 0 o] -0.073

~ -0.018 -0.018 0

For a lamina at - 45°

1.29 0.35
EiJ = E 0.35 1.29
-0.06 -0.06

" DiJ, and Dy are computed from Eq (1.30) as shown in Table 2
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[ 0.083  0.000+ 20.012 )

(1) _1
Ty =4 0.000+  0.083  +0.012

+0.003 +0.003 o.083J

[ %0.001  ¥0.001  -0.119
tigi)=m1 70.001  40.001  -0.119

-0.007 -0.007 ¥0.009

In the case where there are two signs, the upper sign is for an odd numbered
layer and the lower sign is for an even numbered layer.

Three cases of the rectangular laminated plate strip for this spiral
orientation have been computed:
(1) Cylindrical bending by a uniform moment.
(2) Uniaxial extensions: Since the eccentricity, eccy , 1is zero
x

for this particular location of the reference surface, no shifting of
the applied force is necessary.

(3) Uniformly loaded plate strip.

All the results are obtained by substituting these numerical values into Table 1.
The final results are sumarized in Table 3. Plots of the stress distributions
are shown in Figure 5.7 and Figure 5.8.
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Table 3: Summary of the Rectangular Plate Strip Probvlem
Case Description Boundary Conditions
et et v e a s M M
. Cylindrica’l 3ending ( ’»’ w(o) =w(L) =0
- oy Iniformm Moment f L L
re - uo(-,z) =0
| Uniaxial 3xteasion x5 I w(o) =w(L) =0
(ech_c = 0) "i o W | u (o) =0
- Unifcrmly Loaded 1 w(o) =wlL) =0
~ Plate Striz g=const. @ L
L “o(E) =0
Nx(x) Mx(x) uo(x) w(x)
)
il 0 M 0 M (=X
- prm 32 2
185.76%h
= N 0 - b4 0
: : FERE
Lx”
5 =
3 0 3 (x - ) 0 135.76m3 2
Lx> - xu)
o 3L
N (x N _(x M (x M _(x
() (%) () (%)
. M g
1 0 0.00194 ™Y +0.272M 0
=) 0.271N 0 [0} ~-0.023Nh
2 2
2 0 -0.0010gq (Ix-x~) | 0.135q (Ix-x°) 0
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Table 3: (cont.)

s (1)
X
1 e [ ¥ 0.000332 + 1.29 %]
135.756n°
2 0.075 -Iﬁ‘
--2 -
3 .9.&1_*"2_%[+o,oo332+ 1.29 %]
371.52h
o (1)
y
1 — [1 o.oo332+o.35-§]
135.76h
2 0.0k7 g
2
3 3(—1-"‘-’—"-%[ ¥ 0.00332 + 0.35 %]
371.52n
. (1)
Xy
1 —-M—qz 0.03688 to.o6§]
185.76h ]
2 + 0.003 %
3

2

2
al1x-x7) [ 0.03683 + 0.06 &
371.52h

(€)Y
(e}

In the case of

two signs (+ or
+), the upper

sign is for an odd
nunbered layer

and the lower sign
is for an even

nunbered layer.




Stress Distributions for 45° Spiral Orientation
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Figure 5.7 Typical Stress Distributions for Cylindrical Bending
by a Uniform Moment and Uniformly Distributed lLoad
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6. DEFLECTION SURFACES FOR PRESCRIBED EDGE LOADS

In the absence of transverse loads (i.e., g = 0), the compatibility and
equilibrium equations, Eqs (3.12) and (3.13), are both satisfied identically if
U and w are assumed as:

2 2
U= cox + cly + e Xy
(6.1)
W= x2 + e +
84 &Y s

where the ¢y are coefficients which describe the form of the stress function and
the gi are coefficients which describe the shape of the deflection surface.

The introduction of Eq (6.1) into Eqs (3.11) and (3.10a) leads to the follow-
ing expressions for the in-plane forces and bending moments:

Nx = U’yy = r_‘cl

2c (6.2)

=
n

(=]

-
[}

M =2cy b)) +2c b, -c, b +2g d), +2ag d), + 28, 4y

M =2c. b, +2c b
o]

v 1 P21 Cp Pag * 28, dyp + 28) 4y * 28, dyg (6.3)

22
My = 861 Pgy ¥ 2¢, Pgp = Cp Dgg + 28, dg + 28 dyg + 28, dgg

Substituting the values of the ci from Eq (6.2) into Eq (6.3) and writing the
resulting equation in matrix form, one obtains:

M = bN + 2dg (6.4)
vhere
8O
g = -3 (6.5)
€2

T0

A




From Eq (6.4), the deflection surface coefficients may be expressed in terms
of the bending maoments and in-plane forces.

g=-;:f[M-bN] (6.6)

where the flexibility matrix, f, is related to the stiffness matrix, 4, by:

£ =q1 (6.7)

The shape of the deflection surface for several cases of edge loadings will
now be considered.

UNIFORM TENSION
Let all force components be zero except Ny, then the g4 become:

=t r ]
B, = -5 N | f1y Py * ;0 * g
L o
=iy Te b +f_ b, +f_ 5. (6.8)
8) = -3 M| Ta2 P11 7 Ta2 P21 Y26 61] .
g, =-38 [ £, 0.+, b +5,0
2 2 % 16 11 26 21 66 61J

and the deflection surface is given by:

1 2 2
v=-3N [(fubn Lypbay ¥ T1gB6y) X (£ypbyy + Fppbyy + fpglgy) ¥
*+ (£16P07 * TPy * Tg6P61) xy] (6.9)

It must be recalled that all forces are applied at the reference surface and
that it may be possible to change the form of the deflection surface by cha.nging
the location of the reference surface; that is, one of the coefficients of x<,

, or Xy may be made to vanish by a particular choice of the reference surface.

PURE SHEAR

Assume that the only non-zero force component is ny The displacement
surface coefficients are given by:

®
"
]
N =

Ny [fu big * f1o P * g bss]

Ny [flz et Py t Ty bse]

(6.10)

1]
—
]
1
OV

T1




1
8, = -3 ny[ £16 Pig * Tog Pog * g b66] (6.10)

and the displacement surface is

1 2 2
w= -3 ny [(fllbl6 + f12b26 + f16b66) x° + (f12b16 + fob + e b66) y
+(f16b16 + o0 by + T b66) xy] (6.11)

As in the previous case, one of the coefficients of x2, y'2, or Xy may be made
to vanish by an appropriate choice of reference surface.

UNIFORM BENDING ABOUT ONE AXIS

Iet all of the force components be zero except M, which is assumed to be
constant. Then, the values of the g; are given by:

1
go = 2 fll Mx
g. =xf M (6.12)
1 2 712 "x
1
€ =3 f16 -5
and the deflection surface becomes:
1 2 2 )
w_§Mx[fllx + £, +rl6ny (6.13)

In this case, the only tem which can possibly be made to vanish by changing
the location of the reference surface is fy5- The other terms must exist for all
possible choices of the reference surface and for all possible orientations of the
laminas.

PURE TWIST

Assume that the only force component which exists is M’U’ then the 8; take on
the form:

3 5 My, (6.14)

1

8 =3 T16 Mxy
1
2




8, = 3 e Moy (6.14)

The deflection surface is given by

W o= -23: Mo [ fig x° + o6 ¥+ feg xy] (6.15)

The only terms which might be made to vanish in this case are fi¢ and/or fog-
Both the location of the reference surface and the orientation of the laminas will
affect the existence of these terms.
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T. BENDING OF ORTHOTROPIC LAMINATED PLATES

As remarked in Section 4, the general determinative Egs (3.12) and (3.13)
governing the behavior of laminated plates can be specialized in certain instances
of lamina orientation. In the particular case of a plate with pairwise orientation
whose layers are 90 degrees relative to one another, the in-plane and bending
effects are uncoupled. In this case a solution of Eg (3.13) , now in the special
form of Eq (4.29), may be obtained by the Navier method (see for example, Reference
(23)). Recalling the form of this equation:

D + (2D, + UDgg) W, = a(x,¥) (7.1)

+
11 Yy oo XXYy D22 w’yyyy'

if the load q(x, y) is expanded in a double Fourier series

.
a(x,y) = z >" Uy sin% sin P—’%x (7.2)

n=] m=1

then the solution formm of w(x,y) for the simply supported plate may also be taken
as a double Fourier series

= \g' nrx m.
wix,y) = ;owon sin == sin —“sx (7.3)
n=l m=l

where a and b are the lengths of the sides of the plate. The unknown coefficients
W may be found by substituting the two series back into Eq (7.1) and equating
the like terms. The equation is satisfied for every value of n and m if

qhm
m " L ni‘L ( N nem2 mh S
n D + (2D,,, + 4D,.,.) =—— + D,
[ 11 aK 12 66 aebz 22 'bE

The complete solution of w(x,y) is then,

f—°1 © q'nm sin 22X gyp W
wloy) 55 Y Y 3 > (7.5)
2 COCRY P or 02n? " '
n=1 m=l D + 2(D,, + 2D, ) + D
11 ;E 12 66’ 2.2~ 22 ;}I

for the special case of a uniform load q = q_,, Quy is given by

s




-1-69. m=1, 3, 5, - - -
qm.n=2° (7.6)

® mn n=lJ3)5,"'"

The moments and stresses are calculated from Egs (3.10a) and (3.18a). 1In-
plane forces which are found from the solution to Eq (4.28) may be superimposed
as a separate problem since the differential equations and boundary conditions
are uncoupled for this particular orientation of the laminas.

EXAMPLE OF A SQUARE PLATE OF 13 LAYERS WITH PAIRWISE
90 DEGREE EQUIANGULAR ORIENTATION

Consider a 13 layer laminated plate of such an orientation that its behavior
can be described by Eqs (4.28) and (4.29). Each lamina has thickness h and is
orientated such that the principal elastic axes coincide with the coordinate axes.
The length of the sides is a. Let the reference surface be the middle surface

of the seventh layer.
"6.511

0° -5.5h
90° =4.5
0° -3. 51{
90° -2.5H
0° -1.5h

90° J.-O.Sh
Oo r—---- -------- --*—"—"-----‘-"--. x

50°
00
90°
OO
90°
OO

GIRIE IS lole|~]afw]s|w|n] -

5°5h ’6-5h

N ‘--—d;—-—-r—

Figure 7.1

Let the four independent parameters be the same as that of the example in
Section 5, E=E, k = 1.2, ¥ = 0,3, and A = 0.42, The C;j are given by Eq (1.14).
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for an even numbered layer for an odd numbered layer
1.345  0.40k 0 1.121  o.hok 0
'c':iJ =E | o.bOok 1121 O 613 =E | ook 1.345 0

0 0 0.L4k71 0 o] 0.471

The coefficients Ajj and D;; are given by Eq (1.30). Dig' is zero for this
orientation. A convenient form such as Table 2 of Section 5 may be used for the
computation of these coefficients. The results are

' 15.917 5.252 0
Aij = Eh 5.252 16. 141 0
{ o} 0 6.123 |
221.028 T3.966 o] )
DiJ = Eh3 73.966 230.455 0
| 0 0 36.232

Knowing A:i.j , the Bi,j may be found.

0.070k -0.0229 0
1 a
131‘j -5 -0.0229 0.0694 0
0 0 0.1633

The governing differential Eqs (4.28) and (%.29) become

[ 0.0694 U, + 0.1175 U, + 0.0704 U, =0

s ]

B

Eh3[ 221.028 w, + 492.860 w, + 230.455 w, ] = q(x,y)

Since these equations are uncoupled, their solutions may be taken independent-
ly. Only the bending problem will be considered here. If the plate has a uniform

load q = q,, then the solution for w(x,y), which is given by Eq (7.5) and Eq (7.6)
is
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-] -]
16 q V sin 2Xgqp IRY
o /) /, a a
na Eh3 n=l m=1 221.028 ns m + 492.860 m3n3 + 230.455 mn5

(n=113}5"'; m=l}3}5"')

The moments are given by Eq (3.10a)
= 3
M (221.028 w, _ + 73.966 w,w) Eh

= 3
M (73.966 Vs + 230,455 w’w) Eh

” 3
My = - (172.2;64 ""xy) Eh

The stresses are given by Eq (3.18a). Since the in-plane forces and t(i)
are zero, these equations reduce to

ox(i) =-z [61(11) Viee * Eléi) w’yy]

oy(i) = -z [Eléi) L Ezéi) w,w]

. (1)

- (1
xy =-QZC6é)w,

xy

The deflections and the moments at the center of the plate, x = -g—, y= %,
are summarized below

terms in series
(rm) W M, M
4
11 0. 8060176 2 > 0.0513 ¢ a2 | 0.0530 q a°
a ?- o qo .053 q’O
N
qo & 2 2
11, 13, 31, 33, 0.0000172 3 0.0466 q, & 0.0481 q, &
51, 15 Eh

Additional terms are needed to obtain more exact values for the maments
because their series representations converge slower than the series representa-
tion of the deflection.

17




The midspan stresses are

8.2
r X 9

z( 3 ) (.0000766) for odd numbered layer
s ()i {
x

h

2
na  q,

Lz( 3 ) (0.0000879) for even numbered layer
h

O

q
z(—;s—o)(0.0000879) for odd numbered layer

ay(i) = <

ﬂ3-2 q,
LZ( 3 ) (0.0000766) for even numbered layer

A plot of these stresses is shown in Figure 7.2.

= + - o+

Figure 7.2
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8. APPLICATIONS OF THE PERTURBATION METHOD OF SOLUTION

It should be recalled that the perturbation method of solution, as described
in Section 4, is applicable when the squares, products, and higher powers of the
perturbation parameters are negligivly small.

The perturbation method of solution may be applied to problems in which the
boundaries are not rectangular with little more difficulty than arises in applying
it to problems in which the boundaries are rectangular. This situation arises
because the dirferential equations for the first approximation and for each
correction term are of the same form as the equations for isotropic plates. Hence,
any problem which has been solved for isotropic plates can be extended to laminated
rlates by the perturbation method. As an example of a problem for which the
boundaries are not rectangular, the solution for a uniformly-loaded laminated
circular plate with clamped edge is indicated below. An exact solution can be
obtained ror this case, so that a comparison can be made between the exact solu-
tion and the perturbation solution. In addition to this solution, the perturbation
solutions for rectangular plates simply supported on all four edges or simply
suprported on two opposite edges and clamped on the other two edges are also
indicated.

CLAMPED CIRCULAR PLATZ

From 2g (4.15), the differential equations for the first approximation are
the same as those for isotropic plates

I
V =51
L (8.1)
v Uo =0
The boundary conditions for a clamped edge will be taken to be:
W = r = Q0
r
,r=a r=a
L + L = =
= U’r 2 U’ee Nr 0
r=a r=8
For a uniform load, the solutions of these differential equations in polar
coordinates are: (see, for example, Reference (25, )
q c
wo = OD (aa - r2)2
(8.2)
Uu = 0
o

9

i 1




where qo is the magnitude of the load and a is the radius of the plate.

When Eqs (4.16), (%.17), (4.18), and (4.19) are transformed into polar
coordinates, the following equations are obtained:

L _ L - _a
V Ynn = ¥V UYge e
“ 2 (8.3)
V Yses = 2 2
L L 3q
U = U 2 -
Vv Y V Yo =2
L _ 4 - 3a
v wnll - wnl-.!f. BFO'
v * = %%
\'% nl2 %
Y )\ o (8.4)
(o]
Vv = ek = (1 -Vp) g5

L N L 3(10
V Voo = V Vo2 = 55

The remaining equations are all of the fom Vh' (U,w) = 0, with their solutions
identically equal to zero. The solutions of the above equations are:

- % 2 2.2
Upty = Uygoo = -z3p (27 - 1)
Uggg = %&ﬁ (a.2 - r2)2 (8.5)
3q,° 2 2.2
Upro = UYpoy = - 573 (8- 17)
3 2 2.2
Va1 = Vm} < 55 (87 - )
q
Va2 = SlgD (a® - ©%)® (8.6)
% ,2 2.2
V66 = Vn6d =(l-vD)5T2-]5(a - )

80




3q
0% *-__O (32 = r2)2

Yn22 = Yn22 = 512D (8.6)
Therefore, the complete second approximation is:
Q% , 2 22

vk (a8 - r)° | 1+ (n)y +n#+n,, + 0¥ 3
8.7

1 1-Y,

*n g+ (ngg * ngd) (—g—)

q

U= g5 (a8 - ) [ Bos - (4 + L) 5 - Uy + A) %] (8.8)

An exact solution for the uniformly-lcaded clamped circular plate may be

obtained by recognizing that the following forms of solution satisfy boundary
conditions:

w =0 (a.2 - r2)2

(8.9)
U=c, (a2 - £9)?

Two simultaneous equations for the unknown constants C, and Co are obtained by
substituting the above forms of solution into Egs (3.1&) and (3.13). The following
solutions are obtained when the constants C, and Cp have been determined:

q 3B,, + (2B,, + B,/) + 3B
°(a.2-r2)2[ 22 12° 66 nJ

(8.10)

vad g2 ;22 [3b12 * (byy * Dpp - 2bge) *+ 30y,
e a

where,
4 - [3322 + (2B, + Bgg) + 3By, ][ 3d), + 2(a,, + 2450) + 3‘122]
2
- [3b12 * (g + by = g) + 30y, ]

When this exact solution is expressed in terms of the perturbation parameters
and the division is expressed in series form, the perturbation solution can be
seen to consist of the first terms of the exact solution.
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The solution for the simply supported circular plate can be obtained in a
similar manner provided due care is taken in properly satisfying the boundary

conditions.

SIMPLY-SUPPORTED RECTANGULAR PLATE
For the present, the load will be assumed to be sinusoidally distributed;
that is
q=q, sin -:—’5 sin %I (8.11)

where the coordinate system is as shown:

This will serve to illustrate the method, and will indicate that the solution

for any load distribution may be obtained by expanding the load in a double
Fourier series. For this load distribution, the solution to the first approxi-
mations, i.e., the isotropic case is: (see Reference (25), for example)

L

qQ a
o, sin -25 sin -’-(.Bx (8.12)

w =
°© .tp(1+0°)°

Uo =0
where ¢ = a/b, the aspect ratio.

Inserting these relationships into Eqs (4.16), (4.17), (4.18), and (%.19),
the following equations are obtained:
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ol

= of = nX n
V U=V Upp -_—?ED(I-Pa) sin 2= sin ZX

2
vh U, = ——E_. sin & sin H
266 (1 +a2)2 ) b

)'" qo nx b9
v 1) =2 - e———— sin == gin _I

4 (8.13)
VhU = - %2 sin XX gin XX
- 421 D (1 + o) * b
4 _ 1 _k - c xx xy
v Ul-16 =3V ';’(62 - m cos == cos 3

3
b 1 4 o xX ny
U - - U B - ceor———————— cos — cos
V Y%x =3 V YUs; D (1+d)2 a )

b L % X ny
v w = w W = c——e——— sin ~— sin
nll Y ¥Yn1d D (1+ a2)2 a b

i o
Q cos XX oos XX

b N
an16=-vwnlg=3(1+a2) a b




The remaining equations are all of the form v’*(U,w) = 0, with their solutions
identically equal to zero.

The above equations are of two types:

(1) vr( ) - k) sin 2 sin I
4 (8.15)
and (2) vV ( )= k, cos :_x cos l‘b—x

The solutions of these two types of equations are (see Reference (

25), for example):

kl ah X T
(1) ( ) = >3 sin = sin L4
x (1+ a2)2 e b

(8.16)
L o
k2 & N MeX _.  Iox
and (2) ( V=g==3 /) z oy Sin - sin L
(1407 30 ame,k
where c = 7 oo 3
(@ 1)(a®- 1)
Therefore, the complete second approximation is:
q a 2
Vo= [ L4 (a4 myY) —t 4 np Ty
« D(1 +a°) LY (1+a%) (1 +a°)
2 (8.17)
* = :'WD;'Z (ngg + ng¥) + (ny, + n %) o 2 2] sin 25 ain
(1 +a%) (1 +a%) &
4 @ @
3 A7 X
+ m [a(nlé - nlg) + o (n26 - neg)] z . Cm sin ;— s:i.n.bﬂ
n=2,4 m=24
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q_ a 2 "
= o R . X 7
" 2,k [("11+ Lo+ 2lgglot- (B o+ 4,)(1 + )] sin 2% sin §X
x D(1 + a7)
(3.18)
©® o
\ : .
-[ ﬂl6+ 2’62)a + (£26+ 2&51X13 ] Z, 2J cmn SInFEE SInq%x
m=2,4 n=2,L

RECTANGULAR PLATE WITH TWO OPPOSITE EDGES SIMPLY SUPPORTED
AND THE OTHER TWO EDGES CLAMPED

As in the previous case, a sinusoidal distribution of load will be assumed.
For the coordinate system as shown,

LLL AL

L
2
— X

b
2

A3 321}

a
Y
y
The equation for the load is:
q=q  sin ’-;5 cos %x ' (3.19)

To simplify the presentation, the arrangement of the layers will be assumed
to be symmetrical with respect to the middle surface of the plate. An extension
to a general arrangement of the layers can be readily obtained from the solution
given.

The solution is assumed to consist of a particular and a hamogeneous part;
i.e., wo = w + Wo. The particular solution is chosen so as to satisfy the load-
ing condition, whereas the homogeneous solution is such that the sum of the two
parts satisfies the boundary conditions. The particular solution is taken as
that for the case when all edges are simply supported:

a, a*
= in ZX ¢og XX (8.20)
w sin cos .
R Y- a o
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where ¢ = a/b, the aspect ratio.

For symmetry with respect to the x axis, the homogeneous solution can be
shown to ve (see, for example, Reference (25) ):

P Y4+ gAY y ax .
v, [ACosh S B J¥ Sinh 2 sin o (8.21)
where N
b R
A qoa o asmm
-7 2,2 i n n
x D (1L+a%) Sinh 77 Cos =5 + &
L x
B—qoa. o Coshz
. 2.2 . n b .4
x D (1+a) Sinh Z5 Cosh % + &3

Therefore, the solution for the first approximation is:

- nx ny_ x_ n_ iy _ny n_ y
w, = Qsin g [cos T K (31 Sinh Z5 Cosh = Cosh = Simh 2 ] (8.22)
where
ah
Q= q'o 1
D (1+0°)°
and
K= b4 = " b
Sinh = Cosh o + =

Because of the simplifying assumption regarding symmetry with respect to the
middle surface, the only differential equations for the corrective terms which
need to be considered are Eq (4.18). Substitution of Eq (8.22) into Eq (4.18)
leads to the following equations when the functions are expanded in suitable
trigonometric series:

b e,
wnll =Q E‘E sin — [cos ny . K ‘>_‘ cr(lnll) = M]
n=1,3
where
(11) 2 6 o2
nll 2 n o 2 x
¢ =(-1) Cosh® X
[ x (1 +n° a?)? 31]
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. e
nq- Y (nlo) m Qﬁ. 7
v W‘n16 = q :_: L\_., cm qat.x [a L/; dxgn ) 2 -n%z
m=2, 4 n=2, i
3
(n16) nx
TR e e FE
n=2,4
where
o(016) _ __ im
= n(m - 1)
n
= 1
n(n - 1)
(n16) o 2 2
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The solutions to these equations, which are obtained in a manner similar to
that used in the first approximation, are:
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It should be recalled that the second approximation is obtained by summing
these separate solutions times the appropriate parameters:
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9. OPTIMIZATION OF LAMINATE CONFIGURATION

The question of obtaining the optimum orientation of the layers in & structural
laminate can be considered from several viewpoints. There is the question of
whether to optimize for minimum deformation (or minimum volume change in a pressure
vessel), for equal stress in two directions, for maximum strength (which involves
the question of & valid theory of failure), or for some other stress or deformation
condition. In some cases two conditions may be satisfied by the same orientation,
but it is not evident that this should be true in general Then, the particular
application for which the optimum structure is to be determined may be classified
as to whether the stresses are statically determinate, as are the membrane stresses
in a thin-walled pressure vessel, or whether the stresses are statically indeter-
minate, as in the bending of a plate. Thus, a general discussion of optimization
would become quite involved. Only one aspect of the problem will be considered
here.

The question of optimization for minimum deflection involves only a study
of solutions to the differential equations presented in the first part of this
report. This discussion of optimization will be limited to optimizing for
minimum deflection in plate problems. Two classes of problem will be considered:
the cylindrical bending and extension of long rectangular plates, and the bending
of rectangular plates simply supported on two opposite edges.

CYLINDRICAL BENDING OF LONG RECTANGULAR PLATES

As shown in Section 5, in the cylindrical bending of long rectangular plates,
the lateral deflection may be expressed in the following form:

v(x) = - : — PF(x) (9.1)
R
11 All

vhere F(x) may be obtained from the corresponding problem for the deflection of a
beam. Similarly, the extension of a long rectangular plate may be expressed in
the following form:

1

(D}

A - D,

uo(x) =

7 ) (9.2)

1

It can be seen from the sbove expressions that in order to minimize the
deflection or extension in the plate, it is necessary to maximize the expression
(D ¥)2 (D, *)2

D PR Y or All - —ﬁ%%—— , respectively. For orientations which are

11 A1l

symmetrical with respect to the middle surface of the plate, the quantity ¥ is
zero. Therefore, it is obvious that the optimum orientation will be one whic

is symmetrical. For symmetrical orientations, the deflection or extension is
minimized by maximizing the quantity Dy; or A;,, respectively.
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From the definitions of the quantities D,; and Aj3:

A,

_ 1 = (k 3
D)1 =3 2_. Clg ‘ (B - h'}3:-l)
k=1
(9.3)
2,
= (x

DA N CHEE M

w=1

it can be seen that in order to maximize these quantities, the quantity 511 nmust
be maximized for each layer. From the definition of C;5y:

= 4 .2 2 4
)y cu cos @ + 2(012 +2066) sin” 6 cos” @ + Cyy sin” © (9.4)

the conditions for maximizing C;j can be found to be:

sine =0 , when C1,? Cpp + 0y and cll> Cop
cos =0 , when Cpo > c,, and c22> Cpp + ¢, (9.5)
2 (012 + 2c66) - Cyy when Cip + 2 ? Cn
R AN R U and Cio + 20, C
12 66 22

The optimur orientation depends on the relative magnitudes of C;; and Cpp. For
Ci1i1 = Cpp , the optimum orientation is h5°, as would be expected.

RECTANGULAR PLATES SIMPLY~-SUPPORTED ON TWO OPPOSITE EDGES

From the solution given in Section 8, the maximum deflection of a sinusoidally
loaded rectangular plate simply supported on all four edges can be shown to be:

q, a* [
= 1+ (n,, +n.%)
o D(1 +a2)2 1 1l

1 02

W —— e f) W ——
(9.6)

+ (ngg + ng8) ———pp— + (nyp + %) —E—

(1-¥p) af 4
(1L+a )2]

(1 +a%)

where @ = a/b is the aspect ratio, D is the larger of Djj or Djo + 2Dgg or Doy,
and the n;j are small positive quantities defined by:
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=1-ﬁé n*,dll+D11
B2 D 11
+
y -D—Jz n*=d12 D12
p D 12 o
8.7
-1-D_22. n*=d22 Dap
Bop = D 22 D
. =1.—2 D_ss_ n# = —2 %6 * Dsg
66 I-y, D 60 I-9, D

From this solution, it can be seen that to minimjze the deflection the
quantity D should be maximized and the ny 3 and the n4 3 should be minimized. These
two effects are not entirely independent since a change in orientation which de-
creases the njj will also decrease D. However, since for arrangements which are
symmetrical wi%h respect to the middle surface the njj will be zero, the cptimum
arrangement will be one which is symmetrical with respect to the middle surface.

For symmetrical arrangements of the layers, Eq (9.6) can be written as
follows (assuming that D13 3 Dop):

when D), > (D12 + 2D66), D=0D,,

N
. 1 [1 L2 Dy(D*gg) 2 DDy b
max ‘hnn (1 +a2)2 D, (1+ ae)z D, (2+ aa)a
(9.3)
when (1)12 + 2D66) > D,,» D= (1)12 + 2D66)
At D-D D-D L
v . & 3o il [1 . 1 1 T a
(9.9)

For long plates (o = 0), it can be seen that the first of these equations reduces
to one similar to that given in the previous discussion of long plates, whereas
the second equation is different in form since two terms will be retained. From
the previous discussion, it should be realized that the maximization of the Dj ;
depends on the relative magnitude of C;; and C3, + 2C4¢4 (cll can always be defined
to be greater than Cpy).

Rather than attempt to continue in general terms, a series of numerical
examples will be studied. First, consider the material in the layers to be such
that C3; = 1.0C, Cy, + 2Cgg = Cpop = 0.8C. (These values are chosen so that the
njy will be less t 0.2, and their squares, products, and higher powers will be
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negligible.) These layers_may be_oriented so as to maximize Ci13 (thus maximizing
D11) or so as to maximize Cip + 20gg (maximizing Dy, + 2Dgg). When the layers are
orientated so as to maximize C;; (i.e., @ = 0), it can be shown that

G

ll-l.OC

'612 + 2666 = 0.8C
622 = 0.8¢C

When these same layers are oriented so as to maximize Cio + 2666 (i.e., © = 45°),
it can be shown that:

€, = 0.85¢C
612 + 2’666 = 0.95C

022 = 0.85C

For the first case (@ = 0°), Eq (9.8) becomes:

A 2 4
Voax = ng . (1+1a2)2 [l"' 0.h —(1?a2)2 +0.2 '—2(13a2) ] (9.10)
For the second case (8 = 45°), Eq (9.9) becomes:
v =k .t 1.05 [ L4005 , 0.105 a* (9.11)
max “h p (1 +(!2)2 (1 +a2)2 (1 +a2)2 °

where 3
D-c§—2

Next, consider the material in the layers to be such that C,, + 2Cgg = 1.0C,
C11 = Con = 0.8C. When these layers are oriented so as to meximiZe Cy (i.e.,
© = 4SCJ it can be shown that:

cll = 0.9C

012 + 2066 = 0.7C

gk




= 0.9C

When these layers are oriented so that Cyp + 2Cgg is & maximm (i.e., @ = 09),
it can be shown that:

Cll = 0.86¢C

C..+2C

12 66 = 1-0C

022 = 0.8¢

For the first case (© = 45°), Eq. (9.8) becomes:

I

q a 2

0 1.111 [ o
v = 1+ 040 ———ee (9.12)
AL nuD (1+cz2)2 (1+a2)2]

For the second case (@ = 0°), Eq (9.9) becomes:

q ah b4
0 122[l+ 0.222+ 0.2a22 (9.13)
D (1+a%) (1 +a%) (1 +a%)

As an indication of the effect of the aspect ratio, @ , the maximum deflection
has been evaluated from Eqs (9.10), (9.11), (9.12), and (9.13) for the limiting
conditions @ = O (i.e., the long plate) and @ = 1 (i.e., the square plate). The
results can be sumarized as follows:

u' =0 Qo = l
a
" 3‘1:; Dy Dip * 2Dge P1 Dip * g
X maximum maximum maximum maximum
cll = 1.0C
1.0 1.16 0.287 0.276
Cl2 + 20,6 = 0.8C
° (6 = 0°) (0 = 145°) (e = 0°) (e = 145°)
022 = 0.8C
cll = 0.8C
1.111 1.20 0. 309 0.275
C,p + g = 1.0C
° (0 = 45°) (e = 0°) (o = u5°) (e = 0°)
022 = 0.8C




From the left hand side of this table, it can be seen that for long plates
(¢ = 0) the layers should be oriented so as to maximize D,, (the same conclusion
indicated previously). From the right hand side of this %&ble, it can be seen
that for square plates (@ = 1) the optimum orientation tends to be one which
maximizes Dyp + 2Dgg, although the difference between the values in the first
line, 0.287 and 0.276, is within the accuracy to be expected of the perturbation
method of solution, (using orthotropic plate theory, which is applicable in this
case, it can be shown that the value 0.287 should be 0.278).

Interpreting these results in temms of the angle of orientation, it appears
that when Cy; is greater than C;, + 2Cgg the angle of orientation of each layer
should be zero. On the other hand, when Cj» + 2Cgg is greater than C;,, it appears
that for long plates the angle of orientation should be U5 degrees (for C;; = Cpp),
whereas for square plates the angle of orientation should be zero. The aspect
ratio for which the optimum angle of orientation switches from 45 degrees to 0
degrees may be determined by setting Eq (9.8) equal to Eq (9.9). Such a computa-
tion for the material constants indicated in the second line of the above table
gives an aspect ratio of 0.45. However, the accuracy of such a computation is
somewhat gquestionable because of the approximate nature of the method of solution.
The results may be checked by more accurate methods of solution (a refined
perturbation method, orthotropic plate theory, or anisotropic plate thecry),
since only special orientations, for which these methods are applicable, need to
be considered.

For the case of a rectangular plate simply supported on two opposite edges
and clamped on the other two edges, a study of optimum orientations similar to
that given above could be made. The conclusion that the optimum arrangement of
the layers is one which is symmetrical with respect to the middle surface of the
plate would be found to apply in this case also. Furthermore, the solution can
be shown to reduce to be similar in form to that for long rectangular plates when
a = 0. However, it can be seen from the solution given in Section 8 that it will
require extensive numerical calculations in order to arrive at specific conclusions
regarding the optimum orientations for particular aspect ratios.

EFFECT OF THE NUMBER OF LAYERS FOR A GIVEN TOTAL THICKNESS

As indicated in the previous discussion, for many cases the deflection is
minimized by orienting all of the layers in one direction. In these cases, if
the effect of the glue layers is neglected and if the layers are all of the same
material, there will be no effect of the number of layers. If the effect of the
glue layers is considered, there will be a slight increase in the deflection as
the number of layers increases.
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JART III: DETERMINATION OF MATERIAL PROPERTIES, FRACTURE CRITERIA

INTRODUCTION

This part of the report conteins a section describing a possible procedure
which can be followed to determine the elastic properties of an individual
orthotropic lamina. Such properties are necessary for use in the plate and shell
theory developed in Part I. The final section presents a brief description and
the results of a limited number of uniaxiel crack propagetion tests of laminated
foil type laminates.
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10. DETERMINATION OF ELASTIC COEFFICIENTS OF INDIVIDUAL LAMINAS

As described in Part I, Section 1, four independent elastic coefficients
are required to specify the stress-strain relations for an orthotropic lamina.
These are conveniently taken to be tensile moduli of elasticity E; and Ep, shear
modulus of elasticity Gpp and either value of Poisson's Ratio ¥ 1p or Vqr.
Since 1t appears to be difficult to measure the shear modulus of foil directly,
an indirect method must be employed. One possible approach is to perform tensile
stress-strain tests of a foil loaded uniaxially first in the L direction, then
the T direction, and finally in one other direction (say 45 degrees). If the first
two tests EL, Ep and 2/pq or 2/qp can be measured, the value of Gy can be calcu-
lated from the third test. The details of this procedure follow.

Following the steps outlined in Part I, Section 1, it is possible to write
strain-stress equations for an orthotropic lamina referred to arbitrary axes
X, y. Eq (1.2) then takes the more general form

( § r —_— (

€, Si1 S12 Si6 %
€, = 8. 8, Sy % (10.1)
Txy' 516 So6  Ses Txy
\ ) Ny s

The relationships between the S;4 and gij and the angle @ are given by

- L 2 2 4
8, = sll cos © + (2s12 + 366) sin® @ cos“ @ + s22 sin’ ©

L L 2 2
815 (cos” © + sin @) + (Sll +8,, - s66) sin“ @ cos” @ (10.2)

(93]}
I

4 2 2 4
+
822 = 522 cos © + (2512 866) sin” @ cos o + Sll sin” ©

L 4 3 2 2
= Sg¢ {(cos @ + sin @) + 2(.2sll + 25, - hsla - 566) sin” @ cos“ ©
- 3 - = - 3
(2811 - 28, 866) cos” © sin O (2S22 28, 866) cos O sin” @
s = p 3 - - - 3
Spg (zsll - 28, - 366) cos © sin” 6 (es22 28, 566) cos” @ sin 6

The constants 5,4 and S can be obtained from temsion tests with @ = 0°
and 90° respectively, since é?.l becomes :

for @ = 0O°

= 1% g
11 il (10.3)




and for & = 90°
S = S
11 22 (10.4)
e = 45°

The remaining constants to be evaluated are S3o and Sgg; however, the only value
which can be obtained directly by tension tests is the value (2515 + Sgg). If
© = 450 in the expression for S;j, then

(2s,, +S_.) =4S - (S.. +8..)
12 66 11 11 22 (10.5)

= hso

To obtain Sgg, S]@ must be experimentally measured. This involves the
measurement of Poisson's Ratio. A possible procedure would involve meansuring
V11 and ¥qp, from which

) pY)
- L rr , Y,
@81, ™ 84n * 85 [ E, = E ] (10.6)

Substituting Eq (10.6) and Eq (1.3) into Eq (10.5) gives

L 1 ik vLT vTL
S = e |t ==+ ) = == (10.7)
66 " Eygo [EL Efr] [ Ep B ]

In this way the required elastic coefficients may be determined.

Preliminary tensile tests on 1100 - H19 aluminum foil of 0.0035 inch thickness
indicate that mechanical property values can be obtained as described above. To
obtain complete information, one must conduct tension tests in the longitudinal,
transverse and 45 degrees directions from which moduli of elasticity Ep, Eq,
and Ey5 gegrees 8 well as Poisson's Ratios Vyqp and Vg can be determined.

The nhotogrid method which has been successfully applied to a number of deformation
problems in metal sheets can be applied to the problem of determining the fore-
going parameters.
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11. CRACK PROPAGATION IN ALUMINUM FOIL LAMINATES *

Creck propagation tests of 4 x 10 inch specimens load in uniaxisl tension was
perforzed to study the fracture cheracteristics of foil-type laminates. The material
used for maxking the leminated specimens wes 1100 H-1G aluminum foil, 0.0037 inch
thick. The ultimate tensile strength, 0.2 per cent tensile yield strength and
e_estic moduius were obtained from 1 x 4 inch specimens tested on an Iustron
(Model TT-EL) tensile testing mechine. The results of the tests are showr in
Teble 4, Loeding in the grain direction, across it es well as at L5 degrees to
the grain direction of the foil, was done to determine the anisotropy of the
eluwinum foil.

The lamineted specimens were mede from 4 x 10 inch sheets of 1100 H-19
aluminum foil tonded with epoxy resin FN-hT.** Measurements of the glue-line
thickresses showed that they were between 0.00004 to 0.00016 inch; these glue lines
were achieved by applying a 3:2 thinner to epoxy resin mixture with a special spray
gun. A typicel specimen configuration is shown in Figure 1, and as can be seen,
the initial crack was mede by drilling & 1/S-inch hole and sawing a 0.008 inch
slot of desired length through the entire thicimess of the laminated specimers.
Two, four, six, and ten-ply laminated sheets with the foil grain direction both
parailel and perpendicular to the direction of the applied tensile load was
tested. The specimens having initial crack lengths x, of 0.5, 0.6, 0.8, and 1.0
inches were tested in a Tate-Baldwin 60,000 pound tensile testing machine. A
scale of 0.0l inch least count was used to measure crack extension during the slow
loed epplication until unsteble crack lengths, i.e. sudden fracture, occurred.

The experimental results are summarized in Table 5 and are plotted in Figures
2, 3, 4, and 5 for 2-, 4-, 6-, and 10-ply leminated specimens respectively. The
plots of gross area stress vs. crack length show the crack initiation and failure
lines for specimens of varying crack length. During the course of the experiments,
it was observed that upon reaching maximum load a brief discontinuous crack growth
took place without the usual load drop experienced in tests of monolithic specimens.
Although brief in nature, this critical propagation characteristic illustrates the
temporary ability of the laminate to arrest propagation until loads beyond the
meximum critical load are applied. In monolithic specimens, the crack extension
after critical conditions are reached at loads below the maximm load. Both the
monolithic sheets and foil laminates failed after formation of deep-necked bands
in the plane of the sheet. The bands in the monolithic sheet specimens formed
at 45 degrees to the applied tensile load, the bands in the laminate specimens
were not as deep and formed on a fracture plane normal to the applied load. The
lesser necking of the laminates in the fracture region means that reduction of
cross sectional area is less than in monolithic sheets and consequently the load
drop is also reduced. The values of net area initiation and fracture stress
shovn in Table U4 show that crack propagation initiates at a stress far below
(less than 60 per cent) the ultimate strength of the material. The net area

* This section was prepared by J. Frisch, Associate Professor of Mechanical
Engineering, University of California, Berkeley. The work reported formed part
of a Master of Science Thesis in Mechanical Engineering, by C. D. Mote, Jr.,
June, 1960.

e Bloomingdale Ruber Company, Aberdeen, Maryland.
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stress approaches the ultimate strength when the critical crack length is reached.

Figures 6a and €b show plots of final crack length as & function of the
number of foils in the laminate. The ability of lO-ply specimens to withstand
longer final crack length, for particular initial erack length, than 2-, L-, and
6-ply laminates is illustrated and can be directly correlated to the 10-ply
laminate's greater load carrying capacity as shown in Table 4. However, direct
comparison between 2- and 10-ply specimens should be done only with consideration
of the more pronounced buckling, i.e., lower fracture strength, of the 2-ply
specimens. The linear relationship between final and initial crack length for
different laminates is shown in Figures Ta and Tb for with-grain and cross-grain
loading conditions.

Gross area initial stress and maximum gross area stress as functions of
initial crack length are shown in Figures 3 and 9, respectively. These data have
been replotted on log-log coordinates in Figures 10 and 11 to test the theoretical
relationship that the maximum gross area stress will vary inversely with the square
root of the initial crack length. Figures 1la and 1llb show that curves of slope
0.5 can be fitted to the experimental data of each specimen group and the power
relationships are tabulated in Table 5. However, a similar attempt to relate the
gross area initiation sitress to initial craciklength, shown in Figures 10a and 10b,
gives no general relationship as indicated in Table 5, where the exponents vary
from 0.147 to 0.663. The gross area crack initiation stresses and the maximum
gross area stresses as functions of final crack length Xy before sudden fracture
are plotted in Figures 12 and 13. Since the final crack length is related to the
initial one as shown in Figure 7, the resultant decrease in strength with final
crack length as shown in Figures 12 and 13 follows the patterns of the similar
plots with respect to the initial crack length.

Of particular interest is the Griffith-Irwin (26) fracture criterion dW/dA,
the dissipation rate of plastic work during fracture, shown as a function of initial
crack length in Figures llha and l4b. It can be observed that the values of d’.-J/dA
remain relatively constant for each laminated specimen group. The 6~ and 10-ply
specimens show & substantially greater value of dW/dA than do the 2- and 4-ply
specimens. Since higher dissipation rates are associated with slower crack pro-
pagation rates before sudden fracture, it may be concluded that additiomal foil
layers would be beneficial. However, as shown in Figure lha the dissipation rate
would be increased only slightly. The calculated values of dW/dA for each specimen
and the average values for each specimen group are shown in Table 5. These
calculated values incorporate the correction for the ratio of initial crack length
to specimen width. It is noteworthy that the average value of dW/dA for any
specimen group when substituted in the Griffith-Irwin equation for maximum gross
area stress will yleld essentially the same constant shown in Table 5 for the
emrirical power function between maximum gross area stress and initial crack
length.

For example, the empirical equation, as shown in Table 5, for 2-ply laminates
loaded in the cross-grain direction is

O ax = 130 X -0.475 (ksi)
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The average value of diJ/dA = 30.8 together with an elastic modulus of 107 psi
wken substituted in the Griffith-Irwin equation gives

. = 13.9 x, -0.500

as (ksi)

which is sufficiently close to permit failure predictions based on dissipation
rate values.
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Table 4

Material Properties of 1100 E-19 Aluminum Foil Sheets

Tensile ILoad with
Grain Direction of Foil
(with grain)

Tensile Load at 45°
to Grain Direction of Foil

Tensile Loaiat 90°
to Grain Direction of Foil
(cross grain)

Ultimate Tensile
Strength
ksi

31.10

23.50
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0.2% Tensile Modulus of
Yield Strength Zlasticity

i psi x 10'6
28.69 9.67
25.60 9.15
26.10 9.38
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Figure 1. Aluminum Foil Laminate Specimen
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Figure 6a. Final Crack Length vs Number of Ply in 1100 H-19 Aluminum
Foil Laminates
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Figure 6b. Final Crack Length vs Number of Ply in 1100 H-19
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Figure 7a. Final Crack Length vs Initial Crack Length in
1100 H-19 Aluminum Foil Laminates

116




Figure Tb. Final Crack Length vs Initial Crack Length
in 1100 H-19 Aluminum Foil Laminates
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Figure 8a. Gross Area Initiation Stress vs Initial Crack Length

in 1100 H-19 Aluminum Foil Laminates
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Figure 8b. Gross Area Initiation Stress vs Initial Crack Length
in 1100 H-19 Aluminum Foil Laminates
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Figure 9a. Maximum Gross Area Stress vs Initial Crack Length
in 1100 H-19 Aluminum Foil Laminates
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Figure 9b. Maximum Gross Area Stress vs Initial Crack Length
in 1100 H-19 Aluminum Foil Laminates
MAXIMUM GROSS AREA STRESS, 0Opqx (KSI)

1100 H-19 ALUMINUM FOIL LAMINATES
LOADING: CROSS GRAIN

29 © 2 PLY LAMINATE
—— =90 4 PLY LAMINATE

SR _ A ———=4 6 PLY LAMINATE
—-=—=0 |0 PLY LAMINATE

20

<

i :g&.%

Nt
6 °\:£:_‘\
EREER SRESSN
; NS ‘f
o \i
Og'/ 06 08 10 12 14

INITIAL CRACK LENGTH, xo(INCHES)

121




GROSS AREA INITIATION STRESS, 07 (KS|)

1100 H-19 ALUMINUM FOIL LAMINATES
LOADING: WITH GRAIN

O 2 PLY LAMINATE
— — 0 4 PLY LAMINATE
40 — ——aA 6 PLY LAMINATE
—-—0 10 PLY LAMINATE

o
O

D
|

0.2 0.4 0.6 0810 20 40 6.0
INITIAL CRACK LENGTH, x, (INCHES)

Figure 10a. Log-log Plot of Gross Area Initiation Stress vs Initial
Crack Length in 1100 H-19 Aluminum Foil Laminates
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Figure 10b. Log-log Plot of Gross Area Initiation Stress vs Initial
Crack Length in 1100 H-19 Aluminum Foil Laminates
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